
Efficient Synchronization Mechanisms for Scalable GPU
Architectures

by

Xiaowei Ren

M.Sc., Xi’an Jiaotong University, 2015

B.Sc., Xi’an Jiaotong University, 2012

a thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

in

the faculty of graduate and postdoctoral studies
(Electrical and Computer Engineering)

The University of British Columbia
(Vancouver)

October 2020

© Xiaowei Ren, 2020

The following individuals certify that they have read, and recommend to the Faculty
of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled:

Efficient Synchronization Mechanisms for Scalable GPU Architectures

submitted by Xiaowei Ren in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Electrical and Computer Engineering.

Examining Committee:

Mieszko Lis, Electrical and Computer Engineering
Supervisor

Steve Wilton, Electrical and Computer Engineering
Supervisory Committee Member

Konrad Walus, Electrical and Computer Engineering
University Examiner

Ivan Beschastnikh, Computer Science
University Examiner

Vĳay Nagarajan, School of Informatics, University of Edinburgh
External Examiner

Additional Supervisory Committee Members:

Tor Aamodt, Electrical and Computer Engineering
Supervisory Committee Member

ii

Abstract

The Graphics Processing Unit (GPU) has become a mainstream computing platform
for a wide range of applications. Unlike latency-critical Central Processing Units
(CPUs), throughput-oriented GPUs provide high performance by exploiting massive
application parallelism.

In parallel programming, synchronization is necessary to exchange information
for inter-thread dependency. However, inefficient synchronization support can seri-
alize thread execution and restrict parallelism significantly. Considering parallelism
is key to GPU performance, we aim to provide efficient and reliable synchronization
support for both single-GPU and multi-GPU systems. To achieve this target, this
dissertation explores multiple abstraction layers of computer systems, including
programming models, memory consistency models, cache coherence protocols, and
application specific knowledges of graphics rendering.

First, to reduce programming burden without introducing data-races, we propose
Relativistic Cache Coherence (RCC) to enforce Sequential Consistency (SC). By
avoiding stalls of write permission acquisition with logical timestamps, RCC is
30% faster than the best prior SC proposal, and only 7% slower than the best
non-SC design. Second, we introduce GETM, the first GPU Hardware Transactional
Memory (HTM) with eager conflict detection, to help programmers implement
deadlock-free, yet aggressively parallel code. Compared to the best prior GPU
HTM, GETM is up to 2.1× (1.2× gmean) faster, area overheads are 3.6× lower,
and power overheads are 2.2× lower. Third, we design HMG, a hierarchical cache
coherence protocol for multi-GPU systems. By leveraging the latest scoped memory
model, HMG not only can avoid full cache invalidation of software coherence
protocol, but also filters out write invalidation acknowledgments and transient

iii

coherence states. Despite minimal hardware overhead, HMG can achieve 97% of
the performance of an idealized caching system. Finally, we propose CHOPIN, a
novel Split Frame Rendering (SFR) scheme by taking advantage of the parallelism
of image composition. CHOPIN can eliminate the performance overheads of
primitive duplication and sequential primitive distribution that exist in previous
work. CHOPIN outperforms the best prior SFR implementation by up to 56% (25%
gmean) in an 8-GPU system.

iv

Lay Summary

This dissertation proposes architectural supports for efficient synchronizations in
both single-GPU and multi-GPU systems. The innovations span across multiple
abstraction layers of the computing system, including the programming model,
memory consistency model, cache coherence protocol, and application specific
knowledge of graphics processing. This can simplify GPU programming, increase
performance, and extend hardware scalability to large-scale systems, thereby at-
tracting more programmers and extending GPU to a wider range of application
domains.

v

Preface

The following is a list of my publications during the PhD program in chronological
order:

[C1] Xiaowei Ren, and Mieszko Lis. “Efficient Sequential Consistency in
GPUs via Relativistic Cache Coherence”. In Proceedings of the 23rd International
Symposium on High Performance Computer Architecture (HPCA), pages 625–636.
IEEE, 2017.

[C2] Xiaowei Ren, and Mieszko Lis. “High-Performance GPU Transactional
Memory via Eager Conflict Detection”. In Proceedings of the 24th International
Symposium on High Performance Computer Architecture (HPCA), pages 235–246.
IEEE, 2018.

[C3] Xiaowei Ren, Daniel Lustig, Evgeny Bolotin, Aamer Jaleel, Oreste Villa,
and David Nellans. “HMG: Extending Cache Coherence Protocols Across Modern
Hierarchical Multi-GPU Systems”. In Proceedings of the 26th International Sympo-
sium on High Performance Computer Architecture (HPCA), pages 582–595. IEEE,
2020.

[C4] Xiaowei Ren, and Mieszko Lis. “CHOPIN: Scalable Graphics Rendering
in Multi-GPU Systems via Parallel Image Composition”. (Under Submission)

The publications are incorporated into this dissertation as follows:

• Chapter 2 uses background section materials from [C1], [C2], [C3], and [C4].

• Chapter 3 presents a version of the material published in [C1]. In this work,
Xiaowei Ren was the leading researcher, he designed the Relativistic Cache
Coherence (RCC), implemented and evaluated RCC in simulation framework,
analyzed simulation results, and contributed to the article writing. This work

vi

was done under the supervision of Professor Mieszko Lis, he finished most of
the article writing and provided lost of helpful guidance for this work.

• Chapter 4 presents a version of the material published in [C2]. In this work,
Xiaowei Ren was the leading researcher, he proposed the eager conflict
detection mechanism and the metadata tracking hardware structure for GETM,
implemented and evaluated GETM in simulation framework, analyzed sim-
ulation results, and contributed to the article writing. This work was done
under the supervision of Professor Mieszko Lis, he finished most of the article
writing and provided lots of helpful guidance for this work.

• Chapter 5 presents a version of the material published in [C3]. In this work,
Xiaowei Ren was the leading researcher, he extended the cache coherence
protocol to hierarchical multi-GPU systems, deeply optimized the protocol
by leveraging the characteristics of scoped memory consistency model,
implemented and evaluated the proposal in simulation framework, analyzed
simulation results, and finished article writing. This work was done under the
mentoring of Daniel Lustig at NVIDIA, he provided lots of helpful guidance
for this work. Other coauthors also offered many helpful comments to this
work.

• Chapter 6 presents a version of the material described in [C4]. In this work,
Xiaowei Ren was the leading researcher, he proposed the scalable Split
Frame Rendering (SFR) scheme by leveraging parallel image composition,
optimized the proposal by designing a draw command scheduler and an image
composition scheduler, implemented and evaluated the proposal in simulation
framework, analyzed simulation results, and finished article writing. This
work was done under the supervision of Professor Mieszko Lis, he provided
lots of helpful guidance for this work.

• Chapter 7 uses the related work sections in [C1], [C2], [C3], and [C4].

• Chapter 8 uses the conclusion text from [C1], [C2], [C3], and [C4].

vii

Table of Contents

Abstract . iii

Lay Summary . v

Preface . vi

Table of Contents . viii

List of Tables . xiii

List of Figures . xiv

List of Abbreviations . xviii

Acknowledgments . xx

1 Introduction . 1
1.1 The Extensive Usage of the GPU Platform 2
1.2 Challenges of GPU Synchronization 3
1.3 Thesis Statement . 5
1.4 Contributions . 7
1.5 Organization . 8

2 Background . 9
2.1 GPU Architectures . 9

2.1.1 High-level Architecture and Programming Model 9

viii

2.1.2 Hierarchical Multi-Module and Multi-GPU Systems . . . 11
2.2 Synchronization . 12

2.2.1 Locks . 12
2.2.2 Transactional Memory 13

2.3 Memory Consistency Model . 14
2.4 Cache Coherence Protocol . 15
2.5 Graphics Processing . 16

2.5.1 The 3D Rendering Pipeline 16
2.5.2 The Graphics GPU Architecture 17

3 Efficient Sequential Consistency via Relativistic Cache Coherence . 19
3.1 GPUs vs. CPUs: A Consistency and Coherence Perspective 21
3.2 Bottlenecks of Enforcing Sequential Consistency 22
3.3 Enforcing Sequential Consistency in Logical Time 24
3.4 Relativistic Cache Coherence (RCC) 25

3.4.1 Logical Clocks, Versions, and Leases 26
3.4.2 Example Walkthrough 28
3.4.3 Coherence Protocol: States and Transitions 28
3.4.4 L2 Evictions and Timestamp Rollover 32
3.4.5 Lease Time Extension, and Prediction 34
3.4.6 RCC-WO: A Weakly Ordered Variant 37

3.5 Methodology . 37
3.6 Evaluation Results . 39

3.6.1 Performance Analysis 39
3.6.2 Energy Cost and Traffic Load 42
3.6.3 Coherence Protocol Complexity 42
3.6.4 Area Cost . 43

3.7 Summary . 44

4 Hardware Transactional Memory with Eager Conflict Detection . . 45
4.1 GPU Transactional Memory . 48
4.2 Eager Conflict Detection and GPUs 49
4.3 GPUs Favour Eager Conflict Detection 50

ix

4.4 GETM Transactional Memory 53
4.4.1 Atomicity, Consistency, and Isolation 53
4.4.2 Walkthrough Example 58

4.5 GETM Implementation Details 60
4.5.1 SIMT Core Extensions 61
4.5.2 Validation Unit . 61
4.5.3 Commit-Time Coalescing 65

4.6 Methodology . 65
4.7 Evaluation Results . 67

4.7.1 Performance Analysis 67
4.7.2 Sensitivity Analysis . 69
4.7.3 Transaction Abort Rates 71
4.7.4 Scalability . 72
4.7.5 Area and Power Cost . 73

4.8 Summary . 73

5 Cache Coherence Protocol for Hierarchical Multi-GPU Systems . . 74
5.1 Emerging Programs Need Fine-Grained Communication 77
5.2 GPU Weak Memory Model . 77
5.3 Existing GPU Cache Coherence 78
5.4 The Novel Coherence Needs of Modern Multi-GPU Systems . . . 79

5.4.1 Extending Coherence to Multiple GPUs 79
5.4.2 Leveraging GPU Weak Memory Models 80

5.5 Baseline Non-Hierarchical Cache Coherence 81
5.5.1 Architectural Overview 82
5.5.2 Coherence Protocol Flows in Detail 84

5.6 Hierarchical Multi-GPU Cache Coherence 86
5.6.1 Architectural Overview 88
5.6.2 Coherence Protocol Flows in Detail 89

5.7 Methodology . 91
5.8 Evaluation Results . 94

5.8.1 Performance Analysis 94
5.8.2 Sensitivity Analysis . 97

x

5.8.3 Hardware Costs . 99
5.8.4 Discussion . 100

5.9 Summary . 100

6 Scalable Multi-GPU Rendering via Parallel Image Composition . . 102
6.1 Parallel Image Composition . 104
6.2 Limits of Existing Solutions . 105
6.3 CHOPIN: Leveraging Parallel Image Composition 108
6.4 The CHOPIN Architecture . 109

6.4.1 Software Extensions . 110
6.4.2 Hardware Extensions . 112
6.4.3 Composition Workflow 112
6.4.4 Draw Command Scheduler 114
6.4.5 Image Composition Scheduler 117

6.5 Methodology . 119
6.6 Evaluation Results . 121

6.6.1 Performance Analysis 121
6.6.2 Composition Traffic Load 123
6.6.3 Sensitivity Analysis . 124
6.6.4 Hardware Costs . 127
6.6.5 Discussion . 127

6.7 Summary . 127

7 Related Work . 129
7.1 Work Related to Memory Consistency Enforcement 129
7.2 Work Related to Cache Coherence Protocol 131
7.3 Work Related to Transactional Memory 132
7.4 Work Related to Graphics Processing 133

8 Conclusions and Future Work . 136
8.1 Conclusions . 136
8.2 Directions of Future Work . 138

8.2.1 Logical-Time Cache Coherence in Heterogeneous Systems 138
8.2.2 Reducing Transaction Abort Rates of GETM 139

xi

8.2.3 Scoped Memory Model vs. Easy Programming 140
8.2.4 Scaling CHOPIN to Larger Systems 141

Bibliography . 142

xii

List of Tables

Table 3.1 SC and coherence protocol proposals for GPUs. 25
Table 3.2 Timestamps used in RCC. 32
Table 3.3 Simulated GPU and memory hierarchy for RCC. 37
Table 3.4 Benchmarks used for RCC evaluation. 38
Table 3.5 The number of states (stable+transient) and transitions for differ-

ent coherence protocols. 43

Table 4.1 Metadata tracked by GETM. 54
Table 4.2 Simulated GPU and memory hierarchy for GETM. 65
Table 4.3 Benchmarks used for GETM evaluation. 66
Table 4.4 Optimal concurrency (# warp transactions per core) settings and

abort rates for different workloads. 71
Table 4.5 Area and power overheads of different GPU TM designs. . . . 72

Table 5.1 NHCC and HMG coherence directory transition table. 84
Table 5.2 Simulated GPU and memory hierarchy for HMG. 91
Table 5.3 Benchmarks used for HMG evaluation. 93

Table 6.1 Fields tracked by image composition scheduler. 117
Table 6.2 Simulated GPU and memory hierarchy for CHOPIN. 120
Table 6.3 Benchmarks used for CHOPIN evaluation. 120

xiii

List of Figures

Figure 2.1 High-level GPU Architecture as seen by programmers [31]. . . 10
Figure 2.2 GPU programming model. 10
Figure 2.3 3D graphics pipeline and corresponding architectural support. 16

Figure 3.1 The characterization of SC stalls. 23
Figure 3.2 High-level view of enforcing SC in logical time. 24
Figure 3.3 A walkthrough example of RCC. 27
Figure 3.4 Full L1 and L2 coherence FSMs of RCC. 29
Figure 3.5 State transition tables for RCC. 31
Figure 3.6 The characterization of loads on expired data. 34
Figure 3.7 The benefits afforded by lease renew and lease prediction. . . 35
Figure 3.8 Speedup of RCC on inter- and intra-workgroup workloads. . . 39
Figure 3.9 The improvement of SC stalls by RCC. 40
Figure 3.10 Speedup of weak ordering implementations vs. RCC-SC on

inter- and intra-workgroup workloads. 41
Figure 3.11 Energy cost of RCC on inter- and intra-workgroup workloads. 42
Figure 3.12 Traffic load of RCC on inter- and intra-workgroup workloads. 43

Figure 4.1 CUDA ATM benchmark fragment using either locks or TM. . 46
Figure 4.2 Messages required for transactional memory accesses and com-

mits in WarpTM (top) and GETM (bottom). 48
Figure 4.3 The potential performance improvement created by eager con-

flict detection. 51

xiv

Figure 4.4 Benefits of eager conflict detection compared with lazy mecha-
nism and hand-optimized find-grained lock implementations. . 52

Figure 4.5 Overall architecture of a SIMT core with GETM. 53
Figure 4.6 The flowchart for load, store, and commit/abort logic in GETM. 57
Figure 4.7 A walkthrough example of eager conflict resolution in GETM. 59
Figure 4.8 Transaction metadata table microarchitecture. 62
Figure 4.9 Stall buffer microarchitecture. 64
Figure 4.10 Transaction-only execution and wait time, normalized to WarpTM. 67
Figure 4.11 Program execution time normalized to the fine-grained lock

baseline, including transactional and non-transactional parts. . 67
Figure 4.12 Crossbar traffic load normalized to WarpTM. 68
Figure 4.13 Mean latency of the cuckoo table in the metadata storage structure. 68
Figure 4.14 Performance sensitivity of GETM to metadata table size and

tracking granularity, normalized to a WarpTM baseline. 69
Figure 4.15 The maximum number of addresses queued at any given time. 70
Figure 4.16 The average number of requests per address that concurrently

reside in the stall buffer. 70
Figure 4.17 Program execution time in 15-core and 56-core GPUs, normal-

ized to 15-core WarpTM. 71

Figure 5.1 Forward-looking multi-GPU system. Each GPU has multiple
GPU Modules (GPMs). 75

Figure 5.2 Benefits of caching remote GPU data under three different
protocols on a 4-GPU system with 4 GPMs per GPU, all
normalized to a baseline which has no such caching. 76

Figure 5.3 Percentage of inter-GPU loads destined to addresses accessed
by another GPM in the same GPU. 80

Figure 5.4 Future GPUs will consist of multiple GPU Modules (GPMs),
and each GPM might be a chiplet in a single package. 82

Figure 5.5 NHCC coherence architecture. 83
Figure 5.6 Hierarchical coherence in multi-GPU systems. 87
Figure 5.7 Simulator correlation vs. a NVIDIA Quadro GV100 and simu-

lation runtime for our simulator and GPGPU-Sim. 92

xv

Figure 5.8 Performance of various inter-GPM coherence schemes in a
single GPU with 4 GPMs. 94

Figure 5.9 Performance of various coherence protocols in a 4-GPU system,
where each GPU is composed of 4 GPMs. 95

Figure 5.10 Average number of cache lines invalidated by each store request
on shared data. 96

Figure 5.11 Average number of cache lines invalidated by each coherence
directory eviction. 96

Figure 5.12 Total bandwidth cost of invalidation messages. 97
Figure 5.13 Performance sensitivity to inter-GPU bandwidth. 98
Figure 5.14 Performance sensitivity to L2 cache size. 98
Figure 5.15 Performance sensitivity to the coherence directory size. 99
Figure 5.16 Performance sensitivity to the coherence directory tracking

granularity. 99

Figure 6.1 Percentage of geometry processing cycles in the graphics
pipeline of conventional SFR implementation. 106

Figure 6.2 Graphics pipelines of GPUpd and CHOPIN. 107
Figure 6.3 Percentage of execution cycles of the extra pipeline stages in

GPUpd. 107
Figure 6.4 Potential performance improvement afforded by leveraging

parallel image composition. 108
Figure 6.5 High-level system overview of CHOPIN. 110
Figure 6.6 The workflow of each composition group. 113
Figure 6.7 Performance overhead of round-robin draw command scheduling.114
Figure 6.8 Triangle rate of geometry processing stage (top) and whole

graphics pipeline (bottom). 115
Figure 6.9 Draw command scheduler microarchitecture. 116
Figure 6.10 Image composition scheduler microarchitecture. 117
Figure 6.11 Image composition scheduler workflow. 119
Figure 6.12 Performance of an 8-GPU system, baseline is primitive duplica-

tion with configurations of Table 6.2. 122

xvi

Figure 6.13 Execution cycle breakdown of graphics pipeline stages, normal-
ize all results to the cycles of primitive duplication. 122

Figure 6.14 Traffic load of parallel image composition. 123
Figure 6.15 Performance sensitivity to the frequency of updates sent to draw

command scheduler. 123
Figure 6.16 Performance sensitivity to the number of GPUs. 125
Figure 6.17 Performance sensitivity to inter-GPU link bandwidth. 125
Figure 6.18 Performance sensitivity to inter-GPU link latency. 126
Figure 6.19 Performance sensitivity to the threshold of composition group

size. 126

xvii

List of Abbreviations

AFR Alternate Frame Rendering

AI Artificial Intelligence

API Application Programming Interface

AR Augmented Reality

CMP Chip Multiprocessor

CPU Central Processing Unit

CTA Thread Block Array

DLP Data Level Parallelism

DLSS Deep Learning Super Sampling

DRF Data-Race-Free

FB Framebuffer

GPC Graphics Processing Cluster

GPM GPU Module

GPU Graphics Processing Unit

HRF Heterogeneous-Race-Free

HTM Hardware Transactional Memory

ILP Instruction Level Parallelism

IMR Immediate Mode Rendering

LLC Last Level Cache

xviii

LRU Least Recently Used

MCM Multi-Chip-Module

MIMD Multiple-Instruction, Multiple-Data

MLP Memory Level Parallelism

NUMA Non-Uniform Memory Access

PME PolyMorph Engine

PSO Partial Store Ordering

RC Release Consistency

RCC Relativistic Cache Coherence

ROP Rendering Output Unit

RT Render Target

SC Sequential Consistency

SIMD Single-Instruction, Multiple-Data

SIMT Single-Instruction, Multiple-Thread

SM Streaming Multiprocessor

SFR Split Frame Rendering

SWMR Single Writer Multiple Reader

TLP Thread Level Parallelism

TM Transactional Memory

TPC Texture Processing Cluster

TSO Total Store Ordering

VR Virtual Reality

VU Validation Unit

WO Weak Ordering

xix

Acknowledgments

It has been a long journey since I started my PhD study. Lots of great people have
made this journey unforgettable and worth taking. Without their help, the work in
this dissertation would have not been possible.

First and foremost, I would like to thank my dear supervisor, Professor Mieszko
Lis. It has been my great honour of working with him throughout my PhD program.
His dedication to the research and kindness to the students have truly inspired
me both professionally and personally. He was always there for me whenever I
needed advice, whether it be technical, professional, personal, or otherwise. He also
encouraged me to explore various research topics, which have enormously enriched
my knowledge beyond this dissertation. He accepted nothing less than my best, and
I will be forever grateful for his mentorship.

I also would like to thank my qualifying, department, and university examination
committee members: Professor Tor Aamodt, Professor SteveWilton, Professor Sudip
Shekhar, Professor Guy Lemieux, Professor Shahriar Mirabbasi, Professor Konrad
Walus, Professor Ivan Beschastnikh, Professor Ryozo Nagamune, and Professor
Vĳay Nagarajan. I am grateful for their insightful feedback, which has immensely
improved my research work.

I also would like to thank all the people who helped me during my internships in
NVIDIA and MPI-SWS, especially Daniel Lustig, David Nellans, Evgeny Bolotin,
Aamer Jaleel, Oreste Villa, Viktor Vafeiadis, and Michalis Kokologiannakis. Daniel
Lustig was a great mentor during my two internships in NVIDIA, I really appreciate
his technical and personal support during and after my time there. Viktor Vafeiadis
was an excellent mentor while I was at MPI-SWS, I am extremely thankful that he
offered me a precious opportunity to explore a totally new research topic.

xx

I also would like to thank all my lab colleagues: Amin Ghasemazar, Ellis Su,
Mohammad Ewais, Maximilian Golub, Khaled E. Ahmed, Mohamed Omran Matar,
Dingqing Yang, John Deppe, Peter Deutsch, Mohammad Olyaiy, Christopher Ng,
Muchen He, Winnie Gong, and Avilash Mukherjee. I have learned a lot from all
of them. Special thanks to Ellis Su, Dingqing Yang, Amin Ghasemazar, and John
Deppe, it was my great pleasure to cooperate with them.

Finally, I would like to extend my huge thank you to my parents and grandparents.
They have fully supported my decision to pursue my PhD degree. Even though
they did not understand my research, they firmly believed me and offered me their
heartwarming encouragements. I am regretful that I could not go home and visit
them very often during the past several years. I wish they stay happy and healthy
forever.

xxi

To my parents.

xxii

Chapter 1

Introduction

During past few decades, semiconductor technology has largely benefited from
Moore’s Law scaling, which has enabled an exponentially increasing number of
transistors in a single chip. With abundant transistors, processor designers have
greatly improved single-thread performance by maximizing the Instruction Level
Parallelism (ILP). Multi-core architecture, such as Chip Multiprocessor (CMP),
has also been designed to exploit the Data Level Parallelism (DLP) and Thread
Level Parallelism (TLP). However, the failure of Dennard Scaling has made these
architectures hit the power wall, and the problem of dark silicon may significantly
limit their scalability [73]. What makes the situation even worse is the fact that
the Moore’s Law is also approaching the end [210, 232]. In response to these
observations, much attention has been focused on more cost-efficient alternatives.
The massively parallel GPU architecture has been proven to be a promising candidate.

CMP is a widely adopted multi-core CPU architecture. Individual cores are
optimized to reduce single-thread latency, but computing throughput is usually
limited by the relatively small number of processor cores. In contrast, GPU tradeoffs
single-thread latency for system throughput, a massive number of threads are run
on simple shader cores in parallel. The cost of instruction fetching, decoding,
and scheduling is amortized by executing threads in Single-Instruction, Multiple-
Data (SIMD) fashion.

Thanks to the abundant parallelism, GPU architecture is muchmore cost-efficient
for applications that perform identical operations on enormous amounts of data (i.e.,

1

regular parallelism). A typical application is graphics processing, the application
that GPU was originally built for. In recent years, with enhancements in both
software and hardware, academia researchers and industry vendors have successfully
extended GPUs into a much wider range of application domains, such as graph
algorithms [91], scientific computing [101], machine learning [226], and so on.
GPU has become one of the major platforms in computing society.

In parallel architectures, efficient synchronization mechanisms are critical to
guarantee high performance. Otherwise, synchronization can significantly restrict
available parallelism and reduce performance. The massive number of concurrent
threads in GPUs makes this problem far more prominent than CPUs. Given the
importance of GPU computing, this dissertation explores architectural support for
robust and efficient synchronization in GPUs.

1.1 The Extensive Usage of the GPU Platform
Unlike CMP, GPU expects applications to expose a large amount of parallelism.
For example, 3D graphics rendering contains plenty of data-level parallelism; all
attributes of primitives and fragments are computed independently. The code
that specifies the detailed operations is called a shader, which is programmed
with graphics Application Programming Interface (API), such DirectX [7] and
Vulkan [10]. Conventional GPUs built fixed pipelines for different shaders. Although
this can reduce the hardware design complexity, the flexibility and utilization of
hardware components are sacrificed. To address this problem, NVIDIA’s Tesla [132]
and AMD’s TeraScale [142] architectures replaced the fixed pipeline with the unified
shader model, which has largely enriched the programmability of GPU hardware.

The increased programmability also created opportunities for other non-graphics
applications to take advantage of the computing capacity of GPUs. Therefore, in ad-
dition to graphics APIs, industry has also developed CUDA [177] and OpenCL [112]
for general-purpose applications. With the introduction of CUDA and OpenCL, the
resultant programming model is called Single-Instruction, Multiple-Thread (SIMT).
SIMT can efficiently hide the complexity of SIMD hardware, because it allows
programmers to think about their code in the same way as single-thread execution.
SIMT has seen widespread interest and greatly extended the usage of GPU platform.

2

So far, the high-level domain specific libraries built in CUDA have existed in a broad
range of applications, including ray tracing, medical imaging, machine learning,
autonomous driving, robotics, smart cities, and so on [100].

In addition to graphics, machine learning has become another critical GPU
application in recent years. Hence, NVIDIA integrated Tensor Cores [163] in their
GPUs to accelerate matrix convolution, a common operation of neural networks.
They also designed the RTX platform [161] for ray tracing acceleration. Deep
Learning Super Sampling (DLSS) is one of the latest graphics technologies enabled
by Tensors Cores [178]. With DLSS, NVIDIA set out to redefine real-time rendering
through AI-based super resolution – rendering few pixels and then using AI to
construct sharp, higher resolution images. Together with RTX platform, DLSS gives
gamers the performance headroom to maximize ray tracing settings and increase
output resolutions.

Some recent applications require computing power beyond single-GPU system,
so multi-GPU systems have been developed to further scaling performance [170,
173, 174]. In multi-GPU systems, individual GPUs are connected with the advanced
networking technologies, such as NVLink [160] and NVSwitch [162]. GPUs have
also been deployed in datacenters or cloud systems to accelerate supercomputing
applications, such as scientific computing [101], genome sequencing [159], weather
forecasting [175] etc. Cloud gaming systems, like GeForce Now, have also been built
to provide game players a high-quality experience without a substantial hardware
investment [158].

1.2 Challenges of GPU Synchronization
Along with the diversification of GPU applications, data sharing and synchronization
patterns have become more and more complex. Therefore, GPUs have shifted away
from a simple bulk-synchronousmodel to amore traditional sharedmemory program-
ming model. Industrial vendors have exposed an abstraction of Unified Memory (i.e,
unified virtual address space) to software programmers [112, 168]. The NVIDIA
Volta GPU pushed this abstraction even further by enabling independent thread
scheduling – each thread can execute independently with explicit forward progress
guarantee [69]. This modification allows general-purpose Multiple-Instruction,

3

Multiple-Data (MIMD) execution in SIMD architecture of GPUs [72]. Recently,
scoped memory models have also been formalized to support flexible fine-grained
synchronizations [98, 135]. Although lots of innovations have been proposed, many
challenges still exist in the synchronization of GPUs as follows.

• GPU memory models allow many weak behaviours, so programmers need to
insert fences to enforce necessary memory order. However, correctly inserting
fences is difficult and bug-prone; the authors of [16] found missing fences
in a variety of peer-reviewed publications, and even vendor guides [204]. In
contrast, Sequential Consistency (SC) is the most intuitive memory model
for programmers. However, constrained by strong order requirements, the
performance of SC enforcement with MESI-like and timestamp-based cache
coherence protocols is limited by the stalls for acquiring write permissions [94,
221]. Therefore, it’s desirable to propose an efficient cache coherence protocol
to enforce SC without write stalls.

• Although the lock-based synchronization has been widely used in CPU sys-
tems, the massive number of threads in GPUs makes it much more difficult
to get optimal performance and guarantee deadlock-free execution. Transac-
tional Memory (TM) is an alternative solution, which can potentially avoid
these problems by relying on the underlying mechanism to detect conflicts
(data-races) automatically in deadlock-free manner [96]. Unfortunately, the
excessive conflict detection latency leaves the performance of prior GPU TM
designs far away behind fine-grained locks [76, 77]. This has significantly
demotivated the usage of TM in GPU systems.

• More recently, there are two prominent changes for GPU systems: hierarchical
architecture and scoped memory model. To keep scaling performance, GPU
vendors have built ever-larger GPU systems by connecting multiple chip
modules (MCM-GPU) [29] and GPUs (multi-GPUs) [143, 253]. Due to
physical constraints, the bandwidth of the latest inter-GPU link [1, 160, 162] is
still one order of magnitude lower than intra-GPU connections [187], resulting
in severe Non-Uniform Memory Access (NUMA) effect that can bottleneck
performance often. In addition, GPUs have also changed from conventional

4

bulk-synchronous towards scoped memory models for flexible synchronization
support [98, 135]. Caching has been widely implemented to mitigate NUMA
effect. However, none of existing cache coherence protocols can support
efficient caching in multi-GPU systems, since they do not consider the changes
in both computer architecture and memory model.

• Apart from above challenges that are related to the synchronization support for
general-purpose applications, it’s also critical to improve the synchronization
for conventional graphics applications. In principle, the latest multi-GPU
systems are promising to substantially improve performance and offer a visual
experience with much higher quality. Unfortunately, it is not clear how
to adequately parallelize the rendering pipeline to take advantage of these
resources while maintaining low rendering latencies. Current implemen-
tations of Split Frame Rendering (SFR) are bottlenecked by the redundant
computation and the sequential inter-GPU synchronizations [20, 114, 166], so
their performance does not scale. To fully release the performance potential
of multi-GPU systems, a mechanism which can eliminate these bottlenecks is
urgently needed for graphics applications.

1.3 Thesis Statement
This dissertation aims to address above challenges. It enhances the ability of
providing high-performance synchronizations in both single-GPU and multi-GPU
systems. The major proposed enhancements include efficient cache coherence
protocols, GPU Hardware Transactional Memory (HTM), and scalable Split Frame
Rendering (SFR). By offering robust and efficient synchronization mechanisms, the
proposals in this dissertation can potentially attract more programmers and extend
GPU to a wider range of application domains.

First, this dissertation proposes Relativistic Cache Coherence (RCC) to enforce
SC in logical time. In RCC, all Streaming Multiprocessor (SM) cores and cachelines
have separate timestamps. Therefore, SM cores can see different cachelines based
on their own timestamps, and SM core timestamps are advanced independently
according to different cachelines they accessed. Instead of stallingwrite requests until
all sharers become invalid, RCC chooses to advance the timestamp of writing SM

5

core instantly. Although instant timestamp advancement can potentially invalidate
other cachelines in the same SM core, the memory load latency is well known to be
tolerated by GPU architecture. By enforcing SC without write stalls, RCC can avoid
the complexity of fence inserting and provide high performance to programmers at
the same time.

Second, this dissertation proposes GETM, a novel GPU Hardware Transactional
Memory (HTM) system, which can reduce the excessive latency of prior value-based
lazy conflict detection [76, 77] with a logical-timestamp-based eager mechanism.
GETM detects conflicts by comparing the timestamps of transactions and the data
they accessed. If the transaction timestamp is smaller than the data timestamps which
have been set by other transactions, it indicates that the current transaction has a
conflict with other executed ones. While conflicts are detected, GETM eagerly aborts
the current transaction, advances its timestamp, and restarts it later. With eager
conflict detection, transactions that have reached commit point are guaranteed to be
conflict-free, so their results can be committed to the memory without additional
validation. Even though eager conflict detection can slightly increase transaction
abort rate, the dramatically faster aborts and commits of individual transactions can
transfer to substantial performance improvement.

Third, this dissertation proposes HMG, a hierarchical cache coherence protocol
for multi-GPU systems. Similar to GPU-VI [221], HMG is a simple two-state
hardware cache coherence protocol, but adds a coherence hierarchy to exploit
intra-GPU data locality and reduce the bandwidth overhead on inter-GPU links.
HMG has also been deeply optimized by leveraging the non-multi-copy-atomicity of
scoped memory models – non-synchronization stores are processed instantly without
waiting for invalidation acknowledgments, and only synchronization stores are stalled
to enforce correct data visibility. Since there are no stalls for most store requests and
GPU architecture is latency-tolerant, HMG can eschew the complexity of transient
coherence states and extra hardware complexities that are necessary for latency-
critical CPUs. With efficient cache coherence protocol support, applications which
have fine-grained synchronizations [91, 118, 258] can be accelerated substantially
in multi-GPU systems.

Finally, this dissertation proposes CHOPIN, a scalable SFR technique. Consid-
ering various properties of draw commands in a single frame, CHOPIN first divides

6

them into multiple groups. Each draw command is distributed to a specific GPU,
so no redundant computing exists in CHOPIN. At group boundaries, sub-images
generated in each GPU are composed in parallel. Sub-images of opaque objects are
composed out-of-order by retaining pixels that are closer to the camera. Although
sub-image composition of transparent objects needs to respect the depth order,
CHOPIN leverages the associativity of pixel blending [33] to maximize the paral-
lelism – neighbouring sub-images start to compose with each other once they are
ready. Therefore, CHOPIN can eliminate the sequential inter-GPU communication
overhead. A draw command scheduler and an image composition scheduler are
designed to address the problems of load-imbalance and network congestion. By
leveraging parallel image composition, CHOPIN is more scalable than prior SFR
solutions [20, 114, 166].

1.4 Contributions
This dissertation makes the following contributions:

1. It traces the cost of Sequential Consistency (SC) enforcement in realistic
GPUs to the need to acquire write permissions, proposes Relativistic Cache
Coherence (RCC) that improves store performance by enforcing SC in logical
time, and demonstrates that RCC is faster than the best prior GPU SC proposal
by 29% and within 7% of the performance of the best non-SC design.

2. It traces the inefficiency of prior GPUHardware TransactionalMemory (HTM)
proposals to the unamortized latencies of value-based lazy conflict detection,
proposes the first GPU HTM called GETM that detects conflicts with a
logical-timestamp-based eager mechanism, and demonstrates that GETM is
up to 2.1× (1.2× gmean) faster than the best prior proposal.

3. It identifies the necessity of coherence hierarchy for performance scaling in
multi-GPU systems, proposes a hierarchical cache coherence protocol called
HMG for multi-GPUs, eliminates the complexity of transient coherence states
and invalidation acknowledgments by leveraging the non-multi-copy-atomicity
of scoped memory models, and demonstrates that HMG can achieve 97% of
the performance of an idealized caching system.

7

4. It traces the main performance cost of existing Split Frame Rendering
(SFR) mechanisms to redundant computation and sequential inter-GPU
communication requirements, proposes a novel SFR technique called CHOPIN
that takes advantage of the parallel image composition to remove overheads of
prior solutions, develops a draw command scheduler and an image composition
scheduler to address the problems of load-imbalance and network congestion,
and demonstrates that CHOPIN outperforms the best prior SFR proposal by
up to 56% (25% gmean) in an 8-GPU system.

1.5 Organization
The rest of this dissertation is organized as follows:

• Chapter 2 gives the background on GPU architecture, synchronizations, mem-
ory consistency model, cache coherence protocol, and graphics processing.

• Chapter 3 proposes Relativistic Cache Coherence (RCC), a logical-timestamp-
based cache coherence protocol which can efficiently enforce Sequential
Consistency (SC) in GPUs by reducing stalls for write permission acquisition.

• Chapter 4 presents GETM, the first GPU Hardware Transactional Memory
(HTM) which reduces excessive latency of conflict detection by eagerly
checking conflicts when the initial memory request is made.

• Chapter 5 proposes HMG, a hardware-managed cache coherence protocol
designed for forward-looking hierarchical multi-GPU systems with the en-
forcement of scoped memory consistency model.

• Chapter 6 describes CHOPIN, a novel Split Frame Rendering (SFR) scheme
which can eliminate the performance overheads of redundant computing and
sequential primitive exchanging that exist in prior solutions by leveraging
parallel image composition.

• Chapter 7 discusses related work.

• Chapter 8 concludes the dissertation and discusses directions for potential
future work.

8

Chapter 2

Background

This chapter reviews the necessary background materials for the rest of this disserta-
tion. Chapter 2.1 presents a high-level view of the contemporary GPU architecture,
it also introduces the recently explored multi-GPU systems. Chapter 2.2 summarizes
the background on program synchronizations, including lock mechanism and trans-
actional memory. Chapter 2.3 and 2.4 briefly explain a set of concepts in memory
consistency models and cache coherence protocols. Finally, Chapter 2.5 describes
the 3D graphics pipeline and the corresponding architecture support.

2.1 GPU Architectures

2.1.1 High-level Architecture and Programming Model

The high-level architecture of a GPU is shown in Fig. 2.1. A GPU application starts
on the CPU; the operations to be executed by the GPU are packaged in the kernel
functions. Every time the kernel function is called, CPU will launch it onto the GPU
through a compute acceleration API, such as CUDA [177] or OpenCL [112]. Each
kernel function is composed of many threads which perform the same operation
on different data in parallel; this programming model is called Single-Instruction,
Multiple-Thread (SIMT). The thread hierarchy (Fig. 2.2) organizes threads into
thread block arrays (CTAs) in NVIDIA GPUs or workgroups in AMDGPUs, each of
which is dispatched to one of the Streaming Multiprocessor (SM) cores in the GPU

9

Atomic Op. Unit

Last Level Cache

DRAM Controller

Memory Partition

Atomic Op. Unit

Last Level Cache

DRAM Controller

Memory Partition

Reg
File

SM Core SIMT Stacks

Thread Block

Thread Block

L1 Data
Cache

Texture
Cache

Constant
Cache

Reg
File

SM Core SIMT Stacks

Thread Block

Thread Block

L1 Data
Cache

Texture
Cache

Constant
Cache inter-

connect
inter-

connect

GPUGPU Kernel Launch UnitKernel Launch Unit

Off-Chip GDDR
Memory Channel

Off-Chip GDDR
Memory Channel

Off-Chip GDDR
Memory Channel

CPUCPU

Figure 2.1: High-level GPU Architecture as seen by programmers [31].

Grid

Thread (0)Thread (0) Thread (1)Thread (1) Thread (4)Thread (4)

Block (0)

Block (0)Block (0) Block (1)Block (1)

Figure 2.2: GPU programming model.

architecture. Threads are scheduled in batches (called warps in NVIDIA GPUs and
wavefronts in AMDGPUs) in each SM core, each with 32–64 threads. A SIMT stack
is used to handle branch divergence among threads in the same batch [127]. Threads
within a thread block can communicate via an on-chip scratchpad memory called
the shared memory in CUDA (or local memory in OpenCL), and can synchronize
via hardware barriers. The SM cores access a distributed, shared last-level cache
and off-chip DRAM via an on-chip interconnection network. From a programming

10

perspective, GPUmemory is divided into several spaces, each with its own semantics
and performance characteristics: for example, data which is shared by the threads
of a thread block is stored in the shared memory, while data which is shared by all
thread blocks is stored in the global memory.

The GPU launch unit automatically dispatches as many thread blocks as the
GPU on-chip resources can handle in parallel. If the number of thread blocks is
larger than what the GPU can support, the remaining threads will be launched when
previous thread blocks have finished and released sufficient resources. This allows
GPU applications to generate as many threads as necessary without introducing
significant overhead.

As we all know, GPU was originally built as an accelerator for graphics
processing, so there are many specific architecture components for rendering. We
introduce them in Chapter 2.5.2.

2.1.2 Hierarchical Multi-Module and Multi-GPU Systems

Because the end ofMoore’s Law is limiting continued transistor density improvement,
scaling GPU performance by simply integrating more resources in a monolithic chip
has gradually reached the limit. Future GPU architectures will consist of a hierarchy
in which each GPU is split into multiple GPU Modules (GPMs) [62]. Recent work
has demonstrated the benefits of creating GPMs in the form of single-package multi-
chip modules (MCM-GPU) [29]. Researchers have also explored the possibility of
presenting a large hierarchical multi-GPU system to users as if it were a single larger
GPU [143], but mainstream GPU platforms today largely just expose the hierarchy
directly to users so that they can manually optimize data and thread placement and
migration decisions.

The constrained bandwidth of the inter-GPM/GPU links is the main performance
bottleneck on hierarchical GPU systems. To mitigate this, both MCM-GPU and
Multi-GPU have scheduled adjacent CTAs to the same GPM/GPU to exploit inter-
CTA data locality [29, 143]. These proposals map each memory page to the first
GPM/GPU that touches it to increase the likelihood of capturing data locality. They
also extended a conventional GPU software coherence protocol to the L2 caches,
and they showed that it worked well for traditional bulk-synchronous programs.

11

More recently, CARVE [253] proposed to allocate a fraction of local GPU
DRAM as cache for remote GPU data, and enforced coherence using a simple
protocol filtered by tracking whether data was private, read-only, or read-write
shared. However, as CARVE does not track sharers, CARVE broadcasts invalidation
messages to all caches for read-write shared data.

Apart from the above work that focused on general-purpose applications, re-
searchers have also exploredmulti-GPU systems for graphics processing. GPUpd [114]
reduced redundant geometry processing in conventional Split FrameRendering (SFR)
by exchanging primitives through high-speed inter-GPU links, such as NVIDIA’s
NVLink [160] and AMD’s XGMI [1]. Xie et al. proposed OO-VR framework to
accelerate VR by improving data locality [246].

2.2 Synchronization
GPU is a computing platform for highly parallel applications. In multithreaded
programs, synchronizations are necessary to protect shared data accesses from data-
races, thereby guaranteeing correct data communication among threads. Generally,
synchronization orders are specified by programmers with different primitives,
such as barriers, locks, and so on. This section first introduces the widely used
locks. Then, an alternative, Transactional Memory (TM), is described to address
the potential problems of lock in GPU programming.

2.2.1 Locks

A lock is a software data object that creates mutual exclusion (i.e., critical section) of
shared data in memory. If a thread wants to access the shared data, it has to acquire
the associated lock firstly. At any time instant, a lock only can be acquired by at
most one thread, so the thread holding the lock has exclusive access to the shared
data. The lock should be released after operations on shared data are finished, so
that other threads can acquire the lock if needed. Multiple locks which have cyclic
dependence can potentially create deadlocks. Assuming both thread T1 and T2 need
to acquire both locks L1 and L2 to progress, but each thread is holding one of the
two locks and cannot release its own lock until both locks are acquired. In this case,
thread T1 and T2 will be blocked indefinitely. One way to avoid this deadlock is to

12

maintain a global order of lock acquisition.
To simplify programming, we can associate all shared data to one or very few

lock(s) – known as coarse-grained locks. Even though this approach can reduce
programming complexity and largely avoid deadlocks, it will potentially serialize
most executions and significantly hurt performance. Dividing shared data into
multiple smaller critical sections – fine-grained locks – can maximize parallelism,
but a larger number of locks can complicate programming and increase the risk of
deadlocks. With locks, programmers usually need to make conservative assumptions
that different threads will interfere during execution, although they may not actually
interfere at runtime. This can throttle available parallelism and reduce performance.
Hence, the difficulty in using locks for both correct synchronization and high
performance will restrict them to experienced programmers.

2.2.2 Transactional Memory

The massive number of threads in GPU programs can make above situation of lock
even more challenging. Transactional Memory (TM) can mitigate this problem
by decoupling the functional behavior of code (i.e., operation performed by each
transaction) from its performance (i.e., how the transactions are executed). In TM
systems, programmers need to change lock-based critical section to transaction, a
code fragment which should be performed atomically (i.e., either all operations
in a transaction complete successfully or none of them appear to start executing).
Conflicts (data-races) are detected automatically in a deadlock-free manner with
underlying software or hardware mechanisms. TM also keeps restarting aborted
transactions until they finish without any conflicts.

TM designs can be categorized along two axes: conflict detection and version
management. In eager conflict detection (e.g., LogTM [149, 252]), an inconsistent
read or update attempt by a transaction is detected when the access is made, and one
of the conflicting transactions is aborted. Lazy conflict detection (e.g., TCC [89])
defers this until later: often, the entire transaction log is validated during the commit
process, and conflicts are discovered only then. In principle, the lazy technique can
make better conflict resolution decisions because the entire transaction is known,
but has longer commit/abort latencies because the entire transaction must be verified

13

atomically. Typically, eager conflict detection leverages an existing CPU coherence
protocol. However, GPUs lack an efficient coherence protocol that can be leveraged
for eager conflict detection [196].

Version management can also be eager or lazy. Lazily-versioned TMs (e.g.,
TCC [89]) add transactional accesses to a redo log, which is only written to memory
when the transaction has been validated and commits; if the transaction aborts, the
redo log is discarded. In eager version management (e.g., LogTM [149, 252]), the
transaction writes the new value directly to the memory hierarchy, but keeps the old
value in an undo log; if a transaction aborts, the undo log is written to memory.

2.3 Memory Consistency Model
A memory consistency model defines which sequences of values may be legally
returned from the sequence of load operations in each program thread. For example,
the following code snippet from [155, 224] represents a common synchronization
pattern found in many workloads:

core C0 core C1

data = new

done = true while (!done) {

weakly ordered models } // wait for new data value
need a memory fence here . . . use new data. . .

The question is, should core C1 be allowed to see done=true even if data=old?
This is clearly not the intended behaviour, since C1 could see a stale copy of data;
nevertheless, it is allowed by many commercial CPUs and all extant GPUs [16].

Sequential Consistency (SC) [123] most closely corresponds to most program-
mers’ intuition: it requires that (a) memory operations appear to execute and
complete in program order, and (b) all threads observe stores in the same global
sequence. In SC, an execution where done=true when data=old is illegal
because either (a) the writes to data and done were executed out of order by core
C0, or (b) they were executed in one order by C0 but observed in a different order by
C1.

14

Weak consistency models, on the other hand, allow near-unrestricted reordering
of loads and stores in the program, provided that data dependencies are respected;
such reordering typically occurs during compilation and during execution in the
processor. Special memory fence instructions must be used to restrict reordering and
restore sequentially consistent behaviour: in the example above, a fence is needed to
ensure that the store to data completes before the store to done. However, missing
fences can be very difficult to find in a massively multithreaded setting like a GPU;
conversely, adding too many fences compromises performance.

Since compilers can reorder or elide memory references (e.g., via register
allocation), a programming language must also define a memory model. Due to the
range of consistency models present in extant CPUs, languages like Java [137] or
C++ [38] guarantee SC semantics only for programs that are Data-Race-Free (DRF)
(i.e., properly synchronized and fenced); this is known as DRF-0 [11]. The
Heterogeneous-Race-Free (HRF) model recently proposed for hybrid CPU/GPU
architectures further constrains DRF-0 by requiring proper scoping [98]. NVIDIA
has also formalized their PTX memory model with scope annotations [135].

2.4 Cache Coherence Protocol
In systems with private caches, a cache coherence protocol ensures that writes to a
single location are ordered and become visible in the same order to all cores [45]; the
aim is to make caches logically transparent. Since caches are ubiquitous, providing
coherence is a fundamental part of implementing any memory consistency model.

There are two critical invariants for coherence protocol definition: Single Writer
Multiple Reader (SWMR) invariant and Data-Value invariant [155, 224]. For any
given memory location, at any given moment in time1, SWMR requires that there is
only a single core that may write it (and that may also read it) or some number of
cores that may read it. In addition to SWMR, Data-Value invariant requires that the
value of a given memory location is propagated correctly. This invariant states that
the value of a memory location at the start of an epoch is the same as the value of

1The SWMR invariant only needs to be enforced in logical time, not physical time. This subtle
issue enables many optimizations that appear to – but do not – violate this invariant. The proposed
Relativistic Cache Coherence (RCC) in Chapter 3 leverages this insight and enforces SC in logical
time.

15

Display

3D Vertex Inputy z
3
D

 O
b
je

c
t
S

p
ac

e

x
v2v1

v3

v0

v2v1

v3

v0

v2v1

v3

v0

x
v2v1

v3

v0

3
D

 O
b
je

c
t
S

p
ac

e

x
v2v1

v3

v0

2
D

 S
cr

ee
n
 S

p
ac

e

v2v1

v3

v0

v2v1

v3

v0

x

y

x

y

v2v1

v3

v0

x

y

2
D

 S
cr

ee
n
 S

p
ac

e

v2v1

v3

v0

x

y

F
ra

g
m

en
ts

F
ra

g
m

en
ts

P
ix

el
s

P
ix

el
s

y z
3
D

 O
b
je

c
t
S

p
ac

e

x
v2v1

v3

v0

2
D

 S
cr

ee
n
 S

p
ac

e

v2v1

v3

v0

x

y

F
ra

g
m

en
ts

P
ix

el
s

XBAR

Other

GPM/GPU

DRAML2 $

ROP ROPROP ROPROP ROP

L2 $

ROP ROP

L2 $

ROP ROPROP ROPROP ROP

L2 $

ROP ROP

L2 $

ROP ROP

L2 $

ROP ROP

Giga Thread Engine

(a) (b) (c)

Raster Engine

GPC

PME

L1 $

TEX TEXTEX TEX

Inst. $

SM

TPC

PME

L1 $

TEX TEX

Inst. $

SM

TPC

CoresCores

Texture $

PME

L1 $

TEX TEX

Inst. $

SM

TPC

Cores

Texture $

PME

L1 $

TEX TEXTEX TEX

Inst. $

SM

TPC

PME

L1 $

TEX TEX

Inst. $

SM

TPC

CoresCores

Texture $

PME

L1 $

TEX TEX

Inst. $

SM

TPC

Cores

Texture $

Raster Engine

GPC

PME

L1 $

TEX TEX

Inst. $

SM

TPC

Cores

Texture $

PME

L1 $

TEX TEX

Inst. $

SM

TPC

Cores

Texture $

Raster Engine

GPC

PME

L1 $

TEX TEXTEX TEX

Inst. $

SM

TPC

PME

L1 $

TEX TEX

Inst. $

SM

TPC

CoresCores

Texture $

PME

L1 $

TEX TEX

Inst. $

SM

TPC

Cores

Texture $

PME

L1 $

TEX TEXTEX TEX

Inst. $

SM

TPC

PME

L1 $

TEX TEX

Inst. $

SM

TPC

CoresCores

Texture $

PME

L1 $

TEX TEX

Inst. $

SM

TPC

Cores

Texture $

Raster Engine

GPC

PME

L1 $

TEX TEX

Inst. $

SM

TPC

Cores

Texture $

PME

L1 $

TEX TEX

Inst. $

SM

TPC

Cores

Texture $

Vertex Shader

Tessellation

Geometry Shader

❶ Vertex Shader

Tessellation

Geometry Shader

❶

Rasterization❷ Rasterization❷

❸ Depth Test

Pixel Shader

FB Update

❸ Depth Test

Pixel Shader

FB Update

Figure 2.3: (a) A simple illustration of graphics pipeline. (b) General op-
erations of a graphics pipeline. (c) GPU microarchitecture (shaded
components are specific to graphics rendering).

the memory location at the end of its last read-write epoch.
The vast majority of coherence protocols, called “invalidation protocols”, are

designed explicitly to maintain these invariants. A core cannot overwrite a location
until all other sharers get invalidated. If a core wants to read a location, it has to
guarantee that no other cores have cached that location in read-write state. Typical
examples are MESI-like coherence protocols, which have been widely used in CPUs.

2.5 Graphics Processing

2.5.1 The 3D Rendering Pipeline

The function of the 3D graphics pipeline, illustrated in Figure 2.3(a), is to project
a 3D scene, full of objects that often consist of thousands of primitives (usually
triangles), onto a 2D screen space. On the screen, primitives end up as thousands of
pixels; the pixels are accumulated in a Framebuffer (FB) and sent to the display unit
once rendering is complete. Producing a single frame typically involves hundreds
or thousands of draw commands to render all objects in the scene, all of which must

16

go through the graphics pipeline.
Figure 2.3(b) shows the graphics pipeline defined byDirectX [39]; other pipelines

(e.g., OpenGL [207]) are similar. The key pipeline stages are geometry processing,
rasterization, and fragment processing. Geometry processing Ê first reads vertex
attributes (e.g., 3D coordinates) from memory and projects them onto the 2D
screen space using vertex shader. Projected vertices are grouped into primitives
(typically triangles); some primitives may then be split into multiple triangles
through tessellation, which creates smoother object surfaces for a higher level of
visual detail. Generated primitives that are outside of the current viewport are then
culled by geometry-related shaders. The next stage, called rasterization Ë, converts
primitives into fragments, which will in turn be composed to produce pixels on the
screen. Fragment processing Ì has two main tasks: performing the depth test (Z test)
and computing fragment attributes (e.g., colour). The depth test discards fragments
whose depth value (i.e., the distance from the camera) is bigger than prior ones.
Fragments that passed the depth test have their attributes computed using a pixel
shader. Finally, the shaded fragments (which maybe opaque or semi-transparent)
are composed to generate the pixels, which are written to the FB and eventually sent
to the display unit.

2.5.2 The Graphics GPU Architecture

Figure 2.3(c) illustrates the overall microarchitecture of NVIDIA’s Turing GPU [164].
It consists of multiple Graphics Processing Clusters (GPCs) connected to multiple
Render Output Units (ROPs) and L2 cache slices via a high-throughput crossbar.
A Giga Thread Engine distributes the rendering workload to the GPCs based on
resource availability.

GPCs perform rasterization in dedicated Raster Engines, and organize resources
into multiple Texture Processing Clusters (TPCs). Within each TPC, the PolyMorph
Engine (PME) performs most non-programmable operations of the graphics pipeline
except rasterization (e.g., vertex fetching, tessellation, etc). The Streaming Multi-
processor (SM), consisting of hundreds of shader cores, executes the programmable
parts of the rendering pipeline, such as the vertex shaders, pixel shaders, etc.; to
reduce hardware complexity, SMs schedule and execute threads in SIMD fashion

17

(i.e., warps of 32 or 64 threads). Texture Unit (TEX) is a hardware component that
does sampling. Sampling is the process of computing a color from an image texture
and texture coordinates.

On the other side of the interconnect, ROPs perform fragment-granularity tasks
such as the depth test, anti-aliasing, pixel compression, pixel blending, and pixel
output to the FB. A shared L2 cache, accessed through the crossbar, buffers the data
read from off-chip DRAM.

18

Chapter 3

Efficient Sequential Consistency
via Relativistic Cache Coherence

This chapter proposes Relativistic Cache Coherence (RCC) which can efficiently
enforce Sequential Consistency (SC) in GPUs. In contrast with prior GPU SC
work [220], RCC does not explicitly classify read-only/private data: instead, a
predictor naturally learns to assign short cache lifetimes to frequently written shared
data. Unlike prior GPU coherence work [221], RCC operates in logical time;
as a result, stores acquire write permissions instantly but still maintain SC. RCC
underpins a sequentially coherent GPUmemory system that outperforms all previous
proposals and closes the gap between SC and weak consistency in GPUs. RCC is
29% faster than the best prior SC proposal for GPUs, and within 7% of the best
non-SC design.

Sequential consistency — the most intuitive model — requires that (a) all
memory accesses appear to execute in program order and (b) all threads observe
writes in the same sequence [123]. To ensure in-order load/store execution, a thread
must delay issuing some memory operations until preceding writes complete; we
refer to these delays as SC stalls. Moreover, since all cores must observe writes in
the same order, stores cannot complete until they are guaranteed to be visible to
all other threads and cores. Because of these restrictions, few modern commercial
CPUs have supported SC [251]; typically SC is relaxed to permit limited [181, 218]
or near-arbitrary reordering [26, 104, 205, 230]; programmers must then insert

19

memory fences for specific memory operations, in essence manually reintroducing
SC stalls. GPUs manufacturers have followed suit: both NVIDIA and AMD GPUs
exhibit weak consistency [16] similar to Weak Ordering (WO) [68] or Release
Consistency (RC) [78] models.

Correctly inserting fences is difficult, however, especially in GPUs where all
practical programs are concurrent and performance-sensitive. The authors of [16]
found missing fences in a variety of peer-reviewed publications, and even vendor
guides [204]. Such bugs are very difficult to detect: some occurred in as few as 4
out of 100,000 executions in real hardware, and most occurred in fewer than 1%
of executions [16]. Code fenced properly for a specific GPU may not even work
correctly on other GPUs from the same vendor: some of these bugs were observable
in Fermi and Kepler but not in older or newer microarchitectures [16].

SC hardware is desirable, then, if it can be implemented without significant
performance loss. Recent work [94, 220] has argued that this is possible in GPUs:
unlike CPUs, which lack enough Instruction Level Parallelism (ILP) to cover
the additional latency of SC stalls, GPUs can leverage abundant Thread Level
Parallelism (TLP) to cover most SC stalls. The authors of [220] propose reducing
the frequency of the remaining SC stalls by relaxing SC for read-only and private
data; classifying these at runtime, however, requires complex changes to GPU core
microarchitecture and carries an area overhead in devices where silicon is already
at a premium. Moreover, both studies focused on SC built using CPU coherence
protocols (MOESI and MESI) with write-back L1 caches. In GPUs, however,
write-through L1s perform better [221]: GPU L1 caches have very little space per
thread, so a write-back policy brings infrequently written data into the L1 only
to write it back soon afterwards. Commercial GPUs have write-through L1s and
require bypassing/flushing L1 caches to ensure intra-GPU coherence [21, 165, 167].1
Compared to the best GPU relaxed consistency design, the performance cost of
implementing SC appears to be closer to 30% [221].

In the rest of this chapter, we describe RCC and demonstrate how it achieves

1GPU vendor literature and some prior work use “coherence” to describe automatic page-granularity
data transfer between the host CPU and the GPU’s shared L2; some academic proposals use “system
coherence” for the same concept [188]. To the best of our knowledge, no existing GPU product
implements hardware-level intra-GPU coherence.

20

both easy programming and high performance by efficiently enforcing SC with
logical timestamps.

3.1 GPUs vs. CPUs: A Consistency and Coherence
Perspective

Consistency. Modernmulti-core CPUs have largely settled on weakmemorymodels
to enable reordering in-flight memory operations [104, 181, 205, 218, 230]: because
CPUs support at most a few hardware threads, the Memory Level Parallelism (MLP)
obtained from reordering memory operations is key to performance. GPUs, on the
other hand, buffer many tens of warps (e.g., 48–64 [21, 165, 167]) of 32–64 threads
in each GPU Streaming Multiprocessor (SM) core, and when one warp is stalled
(because of an L1 cache miss, for example), the core simply executes another.

With fine-grained multithreading, GPUs can amortize hundreds of cycles
of latency without reordering memory operations; recent work [94, 220] has
suggested that the same mechanism can cover the ordering stalls required by SC.
Indeed, hardware techniques that reorder accesses — such as store buffers — are
either too expensive or ineffective in GPUs, so leaving them out does not hurt
performance [220].

Coherence. CPU caches are generally kept coherent by tracking each block’s
sharers and invalidating all copies before writing the block. Most protocols in
commercial products are quite similar: they have slightly different states (MESI,
MESIF, MOESI, etc.) or sharer tracking methods, but the basic operation relies
on request-reply communication between cores and an ordering point such as a
directory.

All commercial GPUs we are aware of lack automatic coherence among private
L1 caches: in GPU vendor literature, “coherence” refers only to the boundary
between the host CPU and the GPU. NVIDIA Pascal allows the GPU to initiate page
faults and synchronize GPU and CPUmemory spaces [92], but intra-GPU coherence
requires bypassing the L1 caches [16]. AMD Kaveri APUs bypass and flush the
L1 cache for intra-GPU coherence, and bypass the L2 for CPU-GPU sharing [222].
Details for ARM Mali GPUs are scant, but it appears that the coherence boundary
terminates at the GPU shared L2 cache and does not include the L1s [198].

21

Efficient intra-GPU coherence implementations are subject to different con-
straints than CPUs. GPUs have 15, 32, or even 56 SM cores [21, 92, 165, 167],
simultaneously executing around 100,000 threads. While some prior studies [94, 220]
(and our motivation study) have assumed CPU-like MESI coherence, a realistic
implementation could face simultaneous coherence requests from tens of thousands
of threads; just the buffering requirements would be prohibitive [221].

The other coherence protocol work for GPUs leveraged two observations: (a) that
write-through caches provide a natural ordering point at the L2, and (b) that inter-core
synchronization can be implicit via a shared on-chip clock [221]. A cache that
requests read permissions receives a read-only copy with a limited-time lease;
this copy may be read until the shared clock has ticked past the lease time. Two
protocols are proposed in [221]: TC-strong (TCS) can support SC if the core
does not reorder accesses, but stalls stores at the L2 to ensure that all leases for the
address have expired; TC-weak (TCW) allows stores to proceed without stalling,
but compromises write atomicity and cannot support SC.

3.2 Bottlenecks of Enforcing Sequential Consistency
To trace the roots of performance loss created by enforcing SC, we evaluated an SC
implementation similar to prior work [94, 220] but with GPU-style write-through
L1 caches (see Chapter 3.5 for simulation setup). We examined memory-intensive
workloads with and without inter-workgroup sharing previously used to evaluate
GPU cache coherence [221]; the inter-workgroup benchmarks rely on inter-core
coherence traffic, while the intra-workgroup benchmarks communicate only within
each GPU core. We found SC stalls to be relatively infrequent (Figure 3.1a): in only
one case were more than 20% memory operations ever stalled because of SC; this
supports prior arguments [94] that the massive parallelism available in GPUs can
cover most ordering stalls introduced by SC.

We next examined the cause of each stall — i.e., the type of the preceding
memory operation from the same thread. Figure 3.1b shows that most SC stall
cycles are spent waiting for a previous store (or atomic) instruction to complete;
indeed, in most cases, nearly all stall delays are due to waiting for prior writes. This
is because average store latencies are very long: for workloads with inter-workgroup

22

0%
20%
40%
60%
80%

100%

%
 m

em
 o

ps
w/

 S
C

sta
ll inter-workgroup sharing intra-workgroup sharing

(a)

0%
20%
40%
60%
80%

100%

%
 st

all
s d

ue
 to

pr
ev

. s
to

re

(b)

0
1000
2000
3000

lat
en

cy
cy

cle
s

average latency of:
(c) loads stores

BH BFS CL DLB STN VPR HSP KMN LPS NDL SR LUD
0×
1×
2×
3×
4×

SC
-ID

EA
L

sp
ee

du
p

(d)

Figure 3.1: SC stalls are (a) infrequent, but (b) mostly due to preceding stores;
(c) average store latencies are much longer than load latencies; (d)
zero invalidate latency leads to substantial speedup for inter-workgroup
sharing workloads.

communication, store latencies are often much longer than load latencies (2.4×
gmean), and up to 3.7× longer (Figure 3.1c).

This makes sense: to maintain SC, each store must receive an ack before
completing to ensure that the new value has become visible to all cores. There
are two parts to this latency: one — the round-trip to L2 — is unavoidable with
the write-through L1 caches found in GPUs. The other part is ensuring exclusive
coherence permissions: in our MESI-based experiment the write waits until other
sharers have invalidated their copies, while in timestamp-based GPU coherence
protocols like TC-strong [221] the store waits for all read leases to expire. Long-
latency stores can affect performance not only by delaying SC stall resolution, but
also by occupying buffer space or stalling same-cacheline stores from other threads
in MSHRs until the ack is received.

To find out whether coherence delays are significant, we implemented an
idealized variant of SC where acquiring read and write permissions is instant
(SC-ideal). Figure 3.1d shows the speedup of SC-ideal over realistic SC: for
workloads with inter-workgroup sharing, idealizing coherence yields a substantial
performance improvement (1.6× gmean); workloads with only intra-workgroup
sharing see no benefit. In the next section, we address the store latency and SC stall
problems by maintaining SC in logical time.

23

core 0

core 1

core 2

L2

ST A

LD A

LD A

old value valid new value valid

L1 copy valid

L1 copy valid

core 3
LD A

L1 copy valid

Figure 3.2: High-level view of enforcing SC in logical time. Logical time
increases left to right; all cores that observe the new value of A must
advance their logical times past that of the store.

3.3 Enforcing Sequential Consistency in Logical Time
To address the problems identified above, we leverage Lamport’s observation
that ordering constraints need to be maintained only in logical time [122], prior
observations that SC can be maintained logically [84, 131], and the recent insight
that logical timestamps can be used directly to implement a coherence protocol [255].
We propose Relativistic Cache Coherence (RCC), a simple, two-state GPU coherence
protocol where each core maintains — and independently advances — its own
logical time. The L2 keeps track of the last logical write time for each cache block;
whenever a core accesses the L2, it must ensure that its own logical time exceeds
the last write time of the relevant block. Data may be cached in L1s for a limited
(logical) time, after which the block self-invalidates.

Figure 3.2 shows how RCC maintains SC in logical time. First, core 0 loads
address A, and receives a fixed-time lease for A from the L2, which records the
lease duration; core 0 may then read its L1 copy until its logical time exceeds the
lease expiration time. Core 1 writes to A, but to do this it must advance its own
logical time to past the lease given out for A; this step (dashed line) is equivalent
to establishing write permissions in other protocols, but occurs instantly in RCC.
Core 2 loads A from L2 and advances its logical time past the time of core 1’s write.
Finally, core 3 also reads A. The load is logically before the store to A (because
core 3’s logical clock is earlier than A’s), but physically the write to A has already
happened, and only the new value of A is available at the L2. Core 3 thus receives

24

MESI TCS TCW RCC

SC support? yes yes no yes

stall-free store no (invalidate no (wait until yes (but stall yespermissions ? sharers) lease expires) for fences)

Table 3.1: SC and coherence protocol proposals for GPUs.

the new value of A, but must also advance its logical time to that of A’s write.
Naturally, the cost of synchronization does not entirely disappear: advancing a

core’s logical time may cause other L1 cache blocks to expire. In essence, we are
exchanging a reduction in store latency for A for potentially some additional L1
misses on other addresses. While this would be problematic for latency-sensitive
CPUs, throughput-focused GPUs were explicitly designed to amortize this kind of
cost; we will show that in GPUs this tradeoff is worth making.

Lamport’s logical time has recently been proposed as a coherence mechanism
for CPUs [255, 257]. Performance, however, was subpar even compared to the much
simpler MSI protocol, even though the proposed protocol was more complex than
RCC and relied on a complex speculation-and-rollback mechanism. RCC is not only
much simpler, but actually outperforms the best existing GPU protocols.

Next, we describe Relativistic Cache Coherence, a new GPU coherence protocol
that supports SC (like TCS) but allows stores to execute without waiting for write
permissions (like TCW). Table 3.1 compares RCC with prior protocols proposed for
GPUs in the context of SC.

3.4 Relativistic Cache Coherence (RCC)
Relativistic Cache Coherence leverages the observation by Lamport [122] that
consistency need only be maintained in logical time. Two threads may see the
memory as it was at two different logical times, as long as each only observes all
writes logically before — and never sees any writes logically after — its own logical
“now.” In RCC, cores maintain separate logical times, which become synchronized
only when read-write data is shared.

Like all library coherence protocols [119, 211, 221, 255, 257], RCC allows L1
caches to keep private copies of data only for limited-time “leases” granted for each

25

requested block; when a lease expires, the block self-invalidates in L1 without the
need for any coherence traffic. Writes to a block must ensure that no valid copies
are present in any L1s by ensuring that the write time exceeds the expiration time of
all outstanding leases. In RCC, leases are granted and maintained in logical time, so
writes can complete instantly by advancing the writing core’s logical clock.

3.4.1 Logical Clocks, Versions, and Leases

In relativistic coherence, each core maintains, and independently advances, its own
logical clock (now). Similarly, each shared cache (L2) block maintains it own logical
version (ver), equal to the logical time of the last write to this block.

Since the L2 grants per-block read leases to private L1 caches, it keeps track of
when the last lease for a given block will expire (exp). Each L1 cache also keeps
track of the exp it was given by the L2. Different L1s may have different exps
for the same block, but none will exceed the latest exp in L2. Because L1s are
write-through, they do not need to record ver for each block.

A unique, global SC ordering of memory accesses is maintained in logical time
by applying three rules:

1. Core C reading cache block B must advance its logical time now to match
B’s current version ver if B.ver > C.now. This ensures that C cannot use B
to compute new data values with logical times < B.ver, i.e., that C does not
observe a value of B “from the future.”

2. Core C writing cache block B must advance B’s ver to C’s now if B.ver <

C.now, and advance its own now to B’s ver if B.ver > C.now. This ensures
the new value of B cannot be used for computation in cores whose now is
earlier, i.e., that B is not “sent back in time.”

3. Core C writing cache block B must advance its now as well as the new B.ver
beyond the expiration time exp of the last outstanding lease for B. This ensures
that the new value of B does not “leak:” i.e., that any values computed from
the new value of B by other cores cannot coexist in their L1s with the old
value of B.

26

51
40

41
20

ST
 B

41
10

—
51

41
40

10

LD
 B

20

41
10

ST
 A

B.
ex

p

30

51

40
10

A.
ve

r

41

10

52

0

52
ST

 A

41

10

—

10

10 10
20

20 20

51

10
10

A.
ex

p

—

0

10

10

51

ST
 B

A.
ex

p

10

51

40

41

B.
ve

r

—

A.
ex

p

LD
 A

30

10
—

20

10

5110

—

10

30

10

40

40

30
10

10

1010

41

10
10

40

52

51
41

20no
w

0

40

B.
ex

p

—
40

41

40 40

0

—
30

10

52

—

B.
ex

p

40

10
10

LD
 A

30

41

no
w

C
0

L1
 c

ac
he

C
1

L1
 c

ac
he

sh
ar

ed
L2

 c
ac

he
B

(n
ew

)
A

(o
ld

)
C

0:
 B

C
1:

 A
C

1:
 B

co
re

C
0

 C

1

m
em

or
y

op
A

(n
ew

)

=
no
w

 @
 C

0
=
no
w

 @
 C

1

=
ca

ch
ed

=
in

va
lid

or

 e
xp

ire
d

C
0:

 A

B
(o

ld
)

Fi
gu

re
3.
3:

RC
C
ex
ec
ut
in
g
ac
ce
ss
es

to
tw
o
ad
dr
es
se
s(
A
an
d
B
)f
ro
m

tw
o
co
re
s(
C
0
an
d
C
1)
.T

he
ta
bl
e
(le

ft)
tra

ck
s

ea
ch

co
re
’s
lo
gi
ca
lt
im

e
(n
ow

),
an
d
ea
ch

ca
ch
e
bl
oc
k’
s
ve
rs
io
n
(v
er
)a

nd
re
ad

le
as
e
ex
pi
ra
tio

n
(e
xp
)a

fte
re

ac
h

in
str

uc
tio

n
ha
se

xe
cu
te
d;

th
e
ro
w
sr
ep
re
se
nt

th
e
or
de
ro

fi
ns
tru

ct
io
ns

as
ex
ec
ut
ed

in
ph
ys
ic
al
tim

e.
Th

e
di
ag
ra
m

(r
ig
ht
)i
llu

str
at
es

th
e
le
as
e
du
ra
tio

ns
in

ea
ch

ca
ch
e
(to

p)
an
d
ho
w
th
e
lo
gi
ca
lt
im

e
no
w
ad
va
nc
es

in
ea
ch

co
re

as
th
e

co
rr
es
po
nd
in
g
op
er
at
io
ns

fro
m

th
e
ta
bl
e
ex
ec
ut
e
(b
ot
to
m
);
lo
gi
ca
lt
im

e
flo

w
sl
ef
tt
o
rig

ht
w
hi
le
ph
ys
ic
al
tim

e
flo

w
s

to
p
to

bo
tto

m
.B

ol
d
va
lu
es

de
no

te
ch
an
ge
ss

in
ce

th
e
la
st
ste

p;
cr
os
se
d-
ou

tl
ea
se
sh

av
e
ex
pi
re
d.

27

The logical now times of memory operations provide a sequentially consistent
ordering. Provided the core scheduler is modified to ensure that only one global
memory access per warp is issued at any given time, RCC supports SC.2

3.4.2 Example Walkthrough

Figure 3.3 shows how RCC operates on a sequence of instructions from two different
cores. Initially, C0’s cache has neither A and B (since now > exp) and core C1
has both. In the shared L2 cache, B has since been written by a third core and has
ver = 30; because C1’s now has not advanced past 10, however, it may still read its
cached copy of B.

First, core C0 writes A, which updates the A.ver in the L2 (rule 2); C1 still has
now = 0 and can read its old copy of A. C0 then reads B, which receives a new lease
(until logical time 40) but must advance its now past B.ver (rule 1).

Next, C1 writes B, which updates B.ver and C1.now to 41, past the last
outstanding lease for B (rule 3). This step enforces SC ordering between the two
cores: C1 next reads A, and is forced to pick up the value written by C0.

Finally, C0 writes B, advancing its now past the previous write to B (rule 2),
and then A, advancing past the last lease for A (rule 3). Because C1.now

is earlier, however, C1’s next load will happen logically before C0’s write to
A, and will not observe the new value. Note that SC has been maintained,
as the overall behaviour is explained by the following sequential interleaving:
C0: ST A, LD B; C1: ST B, LD A, LD A; C0: ST B, ST A.

3.4.3 Coherence Protocol: States and Transitions

The full state transition diagram for RCC, including both stable and transient states,
is shown in Figure 3.4.

Stable states. RCC has two stable states: V (valid) and I (invalid). Blocks
loaded into the L1 transition to the V state, and may be read until they are evicted,
written, or until their leases expire, at which point they self-invalidate and transition
to the I state. Stores (and atomic read-modify-write operations) may occur in both

2The proof that RCC supports SC is essentially the same as for Tardis [256], we refer the interested
reader there. The main difference is that RCC permits a sequence of unobserved stores to share the
same logical version; the SC ordering in that case is provided by the physical arrival times at the L2.

28

L1 FSM

L2 FSM

IV

IIVI

IV LD

ST/AT
ST/AT

evict/expire

ST/AT

LD reply

LD reply

ST/AT
reply

LD
ST
AT

expire
LD reply

ST/AT reply

LD

LD

LD
ST
AT

IV

IAV

IV

AT

LD/ST

DRAMreply

DRAM
reply

LD
ST
AT

evict

LD
/ST

LD = load
ST = store
AT = atomic

stable
state

transient
state

Figure 3.4: Full L1 and L2 coherence FSMs of RCC (stable and transient
states).

V and I states; the request is forwarded to the L2 (GPU L1s are write-through,
write-no-allocate), and the block eventually transitions to I after the store ack is
received. Expired blocks in V state (exp<now) are treated exactly the same way as
blocks in I state for memory operations and cache replacement purposes.

The L2 also only has V and I states. L2 misses retrieve the value from memory
and transition to V. Because the L2 is write-back (like in commercial GPUs), the V
state allows reads, writes, and atomic operations; a block transitions to I only when
evicted by the L2 cache replacement algorithm.

Transient states. L1 blocks also have three transient states: IV, II, and VI; the
first two are required for correctness, while the third is a GPU-specific optimization.

IV indicates that a load request missed in the L1 and a gets request has been
sent; further load requests for the same cache block will be stored in the
MSHR without more gets requests, and the block will transition to V once
the data response has been received. Stores received while in IV state cause
a transition to II.

II indicates that a store (or atomic) request has been sent to the L2, and the cache
is waiting for an ack message with the logical time at which the write was

29

executed (i.e., the new ver); this is necessary to maintain SC. While in II state,
any data response from the L2 will be forwarded to the core, but the block
will stay in II.

VI is an optimization of the II state when the block was valid before the write;
in VI, the block can still be read by other warps until the ack message with
the new ver is received from the L2 cache; this is important in GPUs because
round-trip access latencies to L2 can be hundreds of cycles [241].

To permit non-blocking misses, the L2 coherence controller has two transient states:

IV buffers new gets and write requests in the relevant MSHR, keeping track of
the maximum now times from the reading and writing processors. Once the
data arrives from DRAM, the block’s version is updated to reflect any writes
in the MSHR and a new lease is generated to satisfy any readers.

IAV indicates an atomic operation received in an invalid state; this stalls any
further L1 requests until the block has been retrieved from DRAM, its version
has been established, and the atomic operation has completed.

Figure 3.5 shows the complete state transition table, including the generatedmessages
and MSHR management details.

RCC has fewer states and transitions than prior art. Earlier logical timestamp
coherence work [255] requires three stable states each for L1 and L2 (transient
states are not described), as well as MESI-like recall and downgrade mechanisms
to implement a private writable state; such inter-core communication is precisely
the source of the SC store latencies we wish to avoid. Prior GPU coherence work
also has more states (13 total) and transitions than RCC. In the SC-capable variant,
a private state is used to avoid store stalls for private data; in the weakly ordered
version, non-fenced stores do not stall but SC support is not possible. RCC employs
logical timestamps to acquire store permissions instantly, and does not require
private or exclusive states.

30

L1
state

requests from processor core L1 events L2 responses

load store atomic evict expiry DATA RENEW ACK

I GETS
{now = L1.now,
 exp = D.exp}
à IV

WRITE
{now = L1.now}
à II

ATOMIC
{now = L1.now}
à II

 — — — — —

V cache
hit

WRITE
 {now = L1.now}
à VI

ATOMIC
{now = L1.now}
à VI

à I à I — — —

IV add to
MSHR

WRITE
 {now = L1.now}
à II

ATOMIC
{now = L1.now}
à II

stall — L1.now = max(L1.now, M.ver)
D.exp = M.exp
à V

D.exp =
 M.exp
à V

 —

II GETS
{now = L1.now,
 exp = D.exp}

WRITE
{now = L1.now}

ATOMIC
{now = L1.now}

stall — L1.now = max(L1.now, M.ver)
read resp? D.exp = M.exp
MSHR.empty? à V, else à VI
atomic resp?
MSHR.empty? à I, else à II

D.exp =
 M.exp
à VI

L1.now =
max(L1.now, M.ver)

MSHR.empty? à I

VI cache
hit

WRITE
{now = L1.now}

ATOMIC
{now = L1.now}

stall à II L1.now = max(L1.now, M.ver)
read resp? D.exp = M.exp
MSHR.empty? à V, else à VI
atomic resp?
MSHR.empty? à I, else à II

— L1.now =
max(L1.now, M.ver)

MSHR.empty? à I
else à II

(a) L1 state transition table for RCC.
L2

state
requests from L1 L2 events memory responses

GETS WRITE ATOMIC evict DATA

I DRAM FETCH
MSHR.lastrd = M.now
à IV

DRAM FETCH
MSHR.lastwr = M.now
à IV

DRAM FETCH
MSHR.lastwr = M.now
à IAV

 — —

V D.exp =
 max(D.exp, D.ver+lease,
 M.now+lease)
M.exp > D.ver?
 RENEW {exp=D.exp}
else
 DATA {exp = D.exp,
 ver = D.ver}

D.ver =
 max(M.now, D.ver,

 D.exp+1)
ACK {ver = D.ver}

D.ver =
 max(M.now, D.ver,
 D.exp+1)
DATA {exp = D.exp,
 ver = D.ver}

mnow =
 max(mnow,
 D.exp,
 D.ver)
dirty?
WBACK
à I

—

IV add to MSHR
MSHR.lastrd =
 max(MSHR.lastrd,
 M.now)

write to MSHR
MSHR.lastwr =
max(MSHR.lastwr,
 M.now)
ACK
{ver = max(MSHR.lastwr,
 mnow)}

stall stall D.exp = D.ver = mnow
MSHR.haswrite?
 D.ver = max(MSHR.lastwr, mnow)
MSHR.hasread?
 D.exp = max(D.ver+lease,

MSHR.lastrd+lease)
 DATA {exp = D.exp, ver = D.ver}
à V

IAV stall stall stall stall D.exp = mnow,
D.ver = max(MSHR.lastwr, mnow)
DATA {exp=D.ver, ver = D.ver} à V

(b) L2 state transition table for RCC.

Figure 3.5: State transition tables for RCC. D is the cache block (e.g., D.exp is
the expiration time for the block), M represents a received message (e.g.,
M.ver in an ACK indicates the time when a write will become visible).
Arrows signify state transitions. V and I are stable states; IV, VI, II (L1
only) and IAV (L2 only) are transient states. Braces denote coherence
message contents; cache block data are included as appropriate. Shaded
areas highlight protocol changes required for lease extensions.

31

name granularity semantics

now GPU core logical time seen by this core
exp cache block lease expiration time
ver cache block data version (last write time)
mnow mem. partition max(exp,ver) evicted to DRAM
lastrd L2 MSHR latest now of any reading core
lastwr L2 MSHR latest now of any writing core

Table 3.2: Timestamps used in RCC.

3.4.4 L2 Evictions and Timestamp Rollover

Table 3.2 lists all timestamps maintained in RCC and their semantics. Core logical
clock now, data write version ver, and lease expiration time exp were described in
Chapter 3.4.1.

L2 evictions. Because data copies in L1 automatically expire, RCC allows
caches to be non-inclusive without requiring the usual recall messages, as in
prior GPU coherence work [221]. Care must be taken, however, to maintain logical
ordering when evicting blocks from L2: if a block were naïvely evicted and then
re-fetched without preserving its ver and exp, it could then be read logically before
it was written, or could be written before all leases expire. Singh et al [221] handle
this by using an MSHR entry to store the evicted block until the timestamp expires,
which limits the number of MSHR entries available for L2 misses.

RCC instead allows the eviction but ensures that, if the block is reloaded from
DRAM, reading or writing it will cause any outstanding leases for it to expire. To
enforce this, we could keep track of ver and exp for each block in DRAM, but this
would require additional storage provisions in main memory. Instead, we store the
maximum ver or exp of any evicted block as the “memory time” mnow, one in each
memory partition. To maintain logical ordering, a block loaded from DRAM will
have its ver and exp set to mnow: any cores that read or write this block will have to
advance their logical time to prevent the issue described above.

Since the L2 is write-back (like in extant GPUs [21, 165, 167]), a write request
that misses in L2 will be stored in MSHR while the block is set to IV state and
retrieved from DRAM, and any additional write requests are merged into the MSHR.
To maintain correct logical write ordering, each MSHR keeps track of lastwr, the

32

highest write time (originating core now value) of anywrite requests received in IV
state. Write requests with now≥ lastwr update the MSHR data and lastwr; write
requests with now< lastwr do not change lastwr but must be tracked until the final
write time is known. The larger of lastwr and mnow will become the block’s ver;
since this is the logical write time, the store can be acknowledged without waiting
for the DRAM response. The store data will remain in the MSHR until the DRAM
response arrives.

A similar case arises for read requests that miss in L2. MSHRs keep track
of lastrd, the latest now of any reading cores; this is used to calculate the lease
expiration (exp) once the block is available, and can be elided to save space (lastwr
would be used instead).

Timestamp rollover. Because timestamps have finite exact representations and
keep increasing, they are subject to arithmetic rollover. In our experiments, 32-bit
logical timestamps advanced on average once for every 1073 core clock cycles;
this corresponds to approximately one rollover per hour at clock speeds found in
high-performance GPUs.

In principle, this can be handled simply by setting core now clocks to 0, flushing
all L1s, setting all L2 ver and exp entries to 0, and setting all mnow values to 0;
SRAMs that support flash-clearing [206] make this easy. However, rollover must be
processed atomically in the presence of in-flight messages, transient cache states,
and independent L2 banks. To implement this correctly, we observe that the L2 is the
only coherence actor that actually increases timestamps (L1s only copy timestamps
received from L2); therefore, the L2 will be the first component to know that rollover
is required.

When an L2 partition needs to roll over a timestamp, it first ensures that all
other L2 partitions have stalled and set their timestamps to 0. This can be done in
many ways, perhaps using a narrow unidirectional ring with the rollover L2 partition
sending a stall flit and all other cores stalling before allowing the flit to continue;
when stall returns to the originating core, all cores will have stalled (in case of
concurrent stall requests, lowest L2 partition ID wins). All stalling partitions must
set all of their timestamps (including lastwr and lastrd) to 0; queued requests and
MSHR entries are retained, with all timestamps reset to 0. The rollover partition
then sends a flush request to all L1s, and waits for responses from all; once these

33

BH
0%

20%

40%

60%

80%

%
 o

f
lo

a
d
s

o
n
 d

a
ta

in
 V

 s
ta

te
 b

u
t

e
x
p
ir

e
d

BFS CL DLB STN VPRGMEAN BH
0%

20%

40%

60%

80%

100%

%
 o

f
lo

a
d
s

o
n

p
re

m
a
tu

re
ly

 e
x
p
ir

e
d
 d

a
ta

BFS CL DLB STN VPRGMEAN

Figure 3.6: Left: fraction of loads that find data in V state but expired (either
for coherence reasons or prematurely); expiration rate is negligible for
intra-workgroup benchmarks. Right: Fraction of expired loads whose
blocks that have not changed in L2 (and can be renewed).

have been received, a resume flit is sent on the inter-partition ring, and all L2
partitions resume processing requests. An L1 that receives a flush request sets its
now to 0 and invalidates all entries before replying to L2; addresses with MSHR
entries enter the II state, while the remaining addresses transition to I.

3.4.5 Lease Time Extension, and Prediction

When the L2 receives a gets request, it generates a read lease for the block and sends
the logical expiration time exp back to the requesting L1. So far, we have assumed
all leases have the same duration (of 10 in Chapter 3.4.2); intuitively, however,
read-only data should receive very long leases to avoid expiration, whereas data
shared frequently should receive short leases to avoid advancing the logical time too
much when they are written (and thus causing other cache blocks to expire).

When a lease is too short, a load request finds the L1 block in V state but with
an expired lease (now > exp). Figure 3.6 (left) shows how many L1 cache blocks
are in V state but expired when accessed. Sometimes, this is the coherence protocol
working as intended and indicates a transitive logically-before relation; at other
times, the expiration reflects imperfect lease assignment. Figure 3.6 (right) shows
that most such expirations are premature (i.e., the block’s L2 entry has not changed).

Lease extension. Every such block generates a gets request and a data response
from the L2. While the gets is small, a data response includes the full cache block,
which poses an unnecessary traffic overhead.

34

 –

R

 +
R

BH

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 T

ra
ff

ic

 –

R

 +
R

BFS

 –

R

 +
R

CL

 –
R

 +

R
DLB

 –

R

 +
R

STN

 –

R

 +
R

VPR

 –

R

 +
R

GMEAN

 –

P

 +
P

BH

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 #

 o
f

lo
a
d
s

o
n
 e

x
p
ir

e
d
 d

a
ta

 –

P

 +
P

BFS

 –

P

 +
P

CL

 –

P

 +
P

DLB

 –

P

 +
P

STN

 –

P

 +
P

VPR

 –

P

 +
P

GMEAN

Figure 3.7: Left: interconnect traffic with (+R) and without (–R) the renew
mechanism. Right: reduction in loads that find expired data in L1, with
(+P) and without (–P) the lease prediction.

Since the L2 knows when the block was last written (ver), it could potentially
renew the lease by sending the new lease expiration time but no data (which the
L1 already has). Before deciding whether to send renew or the full data, the L2
needs to know whether the L1’s previous lease is older than ver; if it is, the L1 may
have incorrect data. To provide this information, we modify gets requests to carry
the exp time of the expired lease (tracked by the L1): if this is newer than the data
version ver in the L2, a renew grant can be sent. The required protocol changes are
shaded in Figure 3.5; note that the complexity cost is minimal, with no additional
states and only two new transitions. Prior work [255] also features a lease extension
mechanism, but the renew mechanism there relies on keeping track of data versions
ver in the L1 caches.

Figure 3.7 (left) shows that the renewal mechanism is effective in reducing
interconnect traffic for inter-workgroup sharing workloads by 15% (traffic is also
reduced for the intra-workgroup benchmarks, but their expiration rates are negligible
to begin with).

Lease prediction. Although lease extension reduces interconnect traffic, many
expirations would not occur to begin with if each block received an optimal lease.
We attempted to sweep a range of fixed leases, but found that the performance spread
among them was negligible. This is because RCC operates in logical time and most
operations advance time in lease-sized amounts; therefore choosing a single fixed
lease merely changes the rate at which logical clocks run for everyone. Optimally
choosing leases, however, is a non-trivial problem for read-write shared data partly

35

because the “correct” lease depends on the precise scheduling and interleaving
of threads; while the correct lease is obvious for read-only data (= ∞), detecting
read-only data at runtime requires microarchitectural changes [220].

Instead, we observe that GPU applications tend to work in synchronized phases,
with most data being read at the beginning of a phase and written at the end. These
(and read-only) data should receive fairly long leases, while data that is shared often
(e.g., locks) should receive short leases.

To find the best lease, the L2 initially predicts the maximum lease (2048) for
every block. When the block is written, the prediction drops to the minimum (8), and
grows (2×) every time a read lease is successfully renewed. This way the L2 quickly
learns to predict short leases for frequently shared read-write blocks (such as those
containing locks), but long leases for data that is mostly read and blocks that miss in
the L2 (e.g., streaming reads). A similar per-block lease prediction mechanism has
been proposed [257] for logical-time CPU coherence protocols; unlike our predictor,
however, short leases are preferred, and the consistency model is relaxed (to TSO)
to maintain performance. Figure 3.7 (right) shows that the predictor reduces expired
reads by 31% for inter-workgroup workloads (again, intra-workgroup benchmarks
benefit but start with negligible expiration rates).

Potential livelock. Because RCC allows cores to read cached data without
advancing their logical clocks, a spinlock that only reads a synchronization variable
may livelock unless other warps advance the logical time. This optimization is
common in multi-core CPUs with invalidate-based coherence, but relies on implicit
store-to-load synchronization that is not guaranteed by coherence or consistency
requirements. To the best of our knowledge, these kinds of spinlocks are not used in
GPUs, as most workloads have enough available parallelism to cover synchronization
delays; spinning merely prevents other (potentially more productive) warps from
executing (in general, synchronization in GPUs requires different optimizations than
in CPUs [243]). Nevertheless, this potential livelock can be avoided by periodically
incrementing the logical time now (say, by 1 every 10,000 cycles).

36

GPU cores 16 streaming multiprocessors (SMs)
core config 1.4GHz, 48 warps × 32 threads, 32 lanes
warp scheduler loose round-robin
register file 32,768 registers (32-bit)
scratchpad 48KB

per-core L1 32KB, 4-way set-associative, 128-byte lines, 128 MSHRs
total L2 1024MB = 8 partitions × 128KB
L2 partition 128KB, 8-way set-associative, 128-byte lines, 128 MSHRs;

340-cycle minimum latency [241]
interconnect one xbar/direction, one 32-bit flit/cycle/dir. @ 700MHz

(175GB/s/dir.); 8-flit VCs (5 for MESI, 2 otherwise)
DRAM 1400MHz, GDDR, 8 bytes/cycle (175GB/s peak),

460-cycle minimum latency, FR-FCFS queues, tCL=12,
tRP=12, tRC=40, tRAS=28, tCCD=2, tWL=4, tRCD=12, tRRD=6,
tCDLR=5, tWR=12, tCCDL=3, tWR=2

lease times 32 bits, predicted from 8–16– · · · –1024–2048

Table 3.3: Simulated GPU and memory hierarchy for RCC.

3.4.6 RCC-WO: A Weakly Ordered Variant

Relative load and store ordering is effected through the per-core logical time now.
Keeping track of two separate logical now times — the read view, consulted and
updated by load operations, and the write view, consulted and updated by store
operations — allows loads and stores to be reordered with respect to each other. In
this scheme, full fence operations require only that the read view and write view now
values be set to whichever is larger; performance can potentially improve because
stores no longer expire cache data that do not have the same block address. The
consistency model is WO [68]; work concurrent with ours [257] proposes a similar
adaptation that supports RCsc [78].

3.5 Methodology
Simulation Setup. We follow the methodology used in previous GPU coherence
work [220, 221]. GPGPU-Sim 3.x [31] is used to simulate the core, and combined
with the Ruby memory hierarchy simulator from gem5 [34] to execute coherence
transactions. For the sequentially consistent implementations (MESI, TCS, RCC),
we altered the shader core model to execute global memory instructions sequentially,

37

inter-workgroup communication

BFS breadth-first-search graph traversal [31]
BH Barnes-Hut n-body simulation kernel [42]
CL RopaDemo cloth physics kernel [40]
DLB dynamic load balancing work stealing algorithm for octree partitioning [47]
STN stencil finite difference solver synchronized using

fast barriers [243]
VPR place & route FPGA synthesis tool [199]

intra-workgroup communication

HSP hotspot 2D thermal simulation kernel [53]
KMN k-means iterative clustering algorithm [53]
LPS Laplace solver 3D Laplace Solver [31]
NDL Needleman-Wunsch DNA sequence alignment [53]
SR anisotropic diffusion speckle reduction for ultrasound images [53]
LUD matrix LU matrix LU decomposition [53]

Table 3.4: Benchmarks used for RCC evaluation.

and stall local memory operations if there are outstanding global accesses; this
matches the “naïve SC” baseline of [220]. We use Garnet [13] to simulate the NoC
and ORION 2.0 [109] to estimate interconnect energy.

The simulated configuration is similar to NVIDIA’s GTX480 (Fermi [165]), with
latencies derived frommicrobenchmark studies [241]; thismatches the configurations
used in prior work [220, 221]. Table 3.3 describes the details.

Benchmarks. We use benchmarks identified and classified into inter- and
intra-workgroup communication categories in prior work on GPU coherence [221].
The intra-workgroup benchmarks execute correctly without coherence, but are used
to quantify the impact of always-on cache coherence on traditional GPU workloads.
For non-SC simulations, the inter-workgroup communication benchmarks rely on
fences; for SC simulations fences act as no-ops in hardware, but were left in the
sources to prevent the compiler from reordering operations.

Benchmark details and sources are listed in Table 3.4. Most were used in prior
work on GPU coherence [221]; we dropped two because our sensitivity studies found
them to be highly nondeterministic and unpredictably sensitive to small changes
in architectural parameters (e.g., a few cycles’ change in L2 latency). We added
missing fences to dlb following [16], and altered tile dimensions in hsp to match
GPU cache block sizes and avoid severe false sharing problems.

38

M
E
S
I

T
C

S
T
C

W
R

C
C

BH

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

5.8 6.9 6.6

M
E
S
I

T
C

S
T
C

W
R

C
C

BFS

M
E
S
I

T
C

S
T
C

W
R

C
C

CL

M
E
S
I

T
C

S
T
C

W
R

C
C

DLB

3.1 2.9 3.3

M
E
S
I

T
C

S
T
C

W
R

C
C

STN

M
E
S
I

T
C

S
T
C

W
R

C
C

VPR

M
E
S
I

T
C

S
T
C

W
R

C
C

GMEAN

(a) inter-workgroup communication

M
E
S
I

T
C

S
T
C

W
R

C
C

HSP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

M
E
S
I

T
C

S
T
C

W
R

C
C

KMN

M
E
S
I

T
C

S
T
C

W
R

C
C

LPS

M
E
S
I

T
C

S
T
C

W
R

C
C

NDL

M
E
S
I

T
C

S
T
C

W
R

C
C

LUD

M
E
S
I

T
C

S
T
C

W
R

C
C

SR

M
E
S
I

T
C

S
T
C

W
R

C
C

GMEAN

(b) intra-workgroup communication

Figure 3.8: Speedup of RCC on inter- and intra-workgroup workloads.

3.6 Evaluation Results

3.6.1 Performance Analysis

SC on top of RCC performs substantially better than prior SC proposals for GPUs.
Figure 3.8 shows that RCC is 76% faster than MESI and 29% faster than TCS
on workloads with inter-workgroup sharing; in fact, performance is within 7%
of TCW, the best prior non-SC proposal. On benchmarks with intra-workgroup
communication patterns, RCC is 10% better than MESI and within 3% of both TCS
and TCW.

RCC significantly reduces SC overheads compared to prior SC implementations
for GPUs. Figure 3.9 (top) shows issue stall rates caused by enforcing SC: either
direct SC memory ordering stalls or LSU pipeline stalls caused by waiting on store
acknowledgements. RCC reduces these by 52% relative to MESI (largely because
there are no invalidate delays) and by 25% relative to TCS (largely because stores in

39

M
E
S
I

T
C

S

R
C

C
BH

0.0

0.4

0.8

1.2

st
a
lls

 b
y
 S

C
 e

n
fo

rc
e
m

e
n
t

M
E
S
I

T
C

S

R
C

C

BFS

M
E
S
I

T
C

S

R
C

C

CL

M
E
S
I

T
C

S

R
C

C

DLB

M
E
S
I

T
C

S

R
C

C

STN

1.7

M
E
S
I

T
C

S

R
C

C

VPR

1.8

M
E
S
I

T
C

S

R
C

C

GMEAN

M
E
S
I

T
C

S

R
C

C

BH

0.0

0.4

0.8

1.2

S
C

 s
ta

ll
re

so
lv

in
g
 l
a
te

n
cy

M
E
S
I

T
C

S

R
C

C

BFS

M
E
S
I

T
C

S

R
C

C

CL

M
E
S
I

T
C

S

R
C

C

DLB
M

E
S
I

T
C

S

R
C

C

STN

1.3

M
E
S
I

T
C

S

R
C

C

VPR

1.8

M
E
S
I

T
C

S

R
C

C

GMEAN

Figure 3.9: The reductions of SC stalls (Top) and SC stall resolving latency
(Bottom) in RCC (results are normalized to MESI).

RCC acquire write permissions without stalling). Figure 3.9 (bottom) shows that SC
ordering stalls in RCC are resolved 35% faster than in MESI and 11% faster relative
to TCS. Both of these metrics directly correlate to performance.

TCW performs better than RCC for bfs because it benefits both from its weak
memory model and from relaxing write atomicity. All threads share a “mask”
vector, which identifies nodes to be visited in the next iteration (next level of the bfs
tree); TCW allows different cores to modify parts of this vector without other cores
observing the result, while RCC strictly enforces SC on cache block granularity and
sees more L1 misses (73% vs. 52%).

Conversely, RCC outperforms TCW on dlb. In dlb, a per-workgroup work
scheduler that completes its task steals tasks from a random other workgroup’s
scheduler. Since work could be stolen at any time, all per-workgroup queue accesses
must be protected with fences; fences stall in TCW until a physical time when all
stores have become globally visible. In actuality, however, work stealing events
are rare, so most of these stalls are unnecessary. RCC allows cores to progress
independently in their own epochs until actual sharing occurs. In addition, stores do

40

R
C

C
-S

C

T
C

W

R
C

C
-W

O
BH

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

R
C

C
-S

C

T
C

W

R
C

C
-W

O

BFS

R
C

C
-S

C

T
C

W

R
C

C
-W

O

CL

R
C

C
-S

C

T
C

W

R
C

C
-W

O

DLB

R
C

C
-S

C

T
C

W

R
C

C
-W

O

STN

R
C

C
-S

C

T
C

W

R
C

C
-W

O

VPR

R
C

C
-S

C

T
C

W

R
C

C
-W

O

GMEAN

(a) inter-workgroup communication

R
C

C
-S

C

T
C

W

R
C

C
-W

O

HSP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

R
C

C
-S

C

T
C

W

R
C

C
-W

O

KMN

R
C

C
-S

C

T
C

W

R
C

C
-W

O

LPS

R
C

C
-S

C

T
C

W

R
C

C
-W

O

NDL

R
C

C
-S

C

T
C

W

R
C

C
-W

O

LUD

R
C

C
-S

C

T
C

W

R
C

C
-W

O

SR

R
C

C
-S

C

T
C

W

R
C

C
-W

O

GMEAN

(b) intra-workgroup communication

Figure 3.10: Speedup of weak ordering implementations vs. RCC-SC on inter-
and intra-workgroup workloads.

not stall even when sharing does occur because SC is enforced in logical time.
We also developed RCC-WO, a weakly ordered variant of RCC (Chapter 3.4.6)

and compared it with both TCW (our implementation supports WO) and the default
SC implementation of RCC. RCC-WO performs neck-to-neck with TCW, and both
perform 7% better than RCC-SC (Figure 3.10).

One RCC implementation can support strong and weak consistency. The
microarchitectural differences between weak and strong variants of RCC in GPUs
consist of one additional scheduler signal per warp to order memops from one thread,
and a small change in how stores update L2 metadata. This opens the possibility
that the hardware memory model in GPUs could be chosen at boot time (as in, e.g.,
SPARCv9 [225]) or even at runtime.

41

M
E
S
I

T
C

S
T
C

W
R

C
C

BH

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 E

n
e
rg

y

M
E
S
I

T
C

S
T
C

W
R

C
C

BFS

M
E
S
I

T
C

S
T
C

W
R

C
C

CL

M
E
S
I

T
C

S
T
C

W
R

C
C

DLB

M
E
S
I

T
C

S
T
C

W
R

C
C

STN

1.67(total)

M
E
S
I

T
C

S
T
C

W
R

C
C

VPR

1.40(total)

M
E
S
I

T
C

S
T
C

W
R

C
C

GMEAN

LINK - DYNAMIC
ROUTER - DYNAMIC

LINK - STATIC
ROUTER - STATIC

(a) inter-workgroup communication

M
E
S
I

T
C

S
T
C

W
R

C
C

HSP

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 E

n
e
rg

y

M
E
S
I

T
C

S
T
C

W
R

C
C

KMN

M
E
S
I

T
C

S
T
C

W
R

C
C

LPS

M
E
S
I

T
C

S
T
C

W
R

C
C

NDL

M
E
S
I

T
C

S
T
C

W
R

C
C

LUD
M

E
S
I

T
C

S
T
C

W
R

C
C

SR

M
E
S
I

T
C

S
T
C

W
R

C
C

GMEAN

(b) intra-workgroup communication

Figure 3.11: Energy cost of RCC on inter- and intra-workgroup workloads.

3.6.2 Energy Cost and Traffic Load

Interconnect energy is 45% lower than MESI, 25% lower than TCS, and only
7% below TCW on inter-workgroup workloads (Figure 3.11); on intra-workgroup
programs, it is 25% better than MESI and on par with TCS/TCW. This is partly
due to reductions in traffic (Figure 3.12) and partly due to RCC needing only two
virtual networks to maintain deadlock-free operations vs. five for MESI. Interconnect
energy expenditure is becoming more important as GPU core counts grow.

3.6.3 Coherence Protocol Complexity

RCC has fewer states than TCW and TCS (Table 3.5). This is important because
coherence is notoriously difficult to verify: usually, validation involves very simplified
formalmodels and extensive simulations [32, 242], but bugs survive despite extensive
validation efforts [41, 61, 67, 185].

42

M
E
S
I

T
C

S
T
C

W
R

C
C

BH

0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

o
rm

a
liz

e
d
 T

ra
ff

ic

M
E
S
I

T
C

S
T
C

W
R

C
C

BFS

M
E
S
I

T
C

S
T
C

W
R

C
C

CL

M
E
S
I

T
C

S
T
C

W
R

C
C

DLB

M
E
S
I

T
C

S
T
C

W
R

C
C

STN

1.72(total)

M
E
S
I

T
C

S
T
C

W
R

C
C

VPR

1.54(total)

M
E
S
I

T
C

S
T
C

W
R

C
C

GMEAN

LD
ST

ATO
REQ

INV
RCL

(a) inter-workgroup communication

M
E
S
I

T
C

S
T
C

W
R

C
C

HSP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 T

ra
ff

ic

M
E
S
I

T
C

S
T
C

W
R

C
C

KMN

M
E
S
I

T
C

S
T
C

W
R

C
C

LPS

M
E
S
I

T
C

S
T
C

W
R

C
C

NDL

M
E
S
I

T
C

S
T
C

W
R

C
C

LUD
M

E
S
I

T
C

S
T
C

W
R

C
C

SR

M
E
S
I

T
C

S
T
C

W
R

C
C

GMEAN

(b) intra-workgroup communication

Figure 3.12: Traffic load of RCC on inter- and intra-workgroup workloads.

MESI TCS TCW RCC

L1 states 16 (5+11) 5 (2+3) 5 (2+3) 5 (2+3)
L1 transitions 81 27 42 33
L2 states 15 (4+11) 8 (4+4) 8 (4+4) 4 (2+2)
L2 transitions 50 23 34 14

Table 3.5: The number of states (stable+transient) and transitions for different
coherence protocols.

3.6.4 Area Cost

RCC has reasonable silicon area overheads. For every L1 block, RCC only stores
exp, and, for every L2 block, exp and ver. GPU cache blocks are 128 bytes, with
perhaps 3-byte tags; with 32-bit timestamps this is 3% overhead for L1 and 6% area
overhead for L2.

43

3.7 Summary
In this chapter we track the source of SC inefficiency in GPUs to long store latencies
caused by coherence traffic; these severely exacerbate SC ordering and structural
bottlenecks that GPUs could otherwise easily amortize. We address these by
proposing RCC, a coherence protocol that uses logical timestamps to reduce store
latency. When used as part of an SC implementation, RCC reduces SC-related stalls
by 25%, and stall resolve latency by 11%, compared to the best coherence proposal
for GPUs capable of supporting SC; as a result, performance is 29% better.

When used in RC mode, RCC matches the best prior RC proposal; because the
hardware needed for RCC is similar for SC and RC, a single implementation can
potentially allow runtime selection of the desired memory consistency model.

44

Chapter 4

Hardware Transactional Memory
with Eager Conflict Detection

This chapter explores a simple and reliable programming model to implement
efficient synchronization in GPUs. Instead of the lock mechanism, we choose
Transactional Memory (TM) for simple and deadlock-free programming. We
identify the excessive latency of value-based lazy conflict detection mechanism is
critical performance bottleneck of prior GPU TM designs, so we propose GETM,
the first GPU hardware TM with eager conflict detection. GETM relies on a
logical-timestamp-based conflict detection mechanism: by comparing the timestamp
of transaction with the timestamp of accessed data in memory, conflicts are detected
eagerly when the initial memory access is made. Performance of GETM is up to
2.1× (1.2× gmean) better than the best prior work. Area overheads are 3.6× lower
and power overheads are 2.2× lower.

While GPUs have traditionally focused on streaming applications with regular
parallelism, irregular GPU applications with fine-grained synchronization are
becoming increasingly important. Graph transformation [140, 249], dynamic
programming [129], parallel data structures [150], and distributed hashtables [97]
have all been accelerated on GPUs using fine-grained locks. Fine-grained parallel
algorithms have recently become a hardware optimization focus for commercial
GPUs [69].

Unfortunately, high-performance parallel applications with fine-grained locks

45

if (src > dst) { // acquire in−order to avoid deadlock
outer = src; inner = dst;

} else {
inner = src; outer = dst;

}
done = false;
while (!done) { // loop on flag to avoid SIMT deadlock

if (atomicCAS(&locks[outer], 0, 1) == 0) {
if (atomicCAS(&locks[inner], 0, 1) == 0) {

accounts[src] −= amount;
accounts[dst] += amount;
locks[inner] = 0; // release
locks[outer] = 0; // both locks
done = true;

} else { // acquired outer but not inner lock
locks[outer] = 0; // release outer lock

}
}

}

txbegin
accounts[src] −= amount;
accounts[dst] += amount;

txcommit

Figure 4.1: CUDA ATM benchmark fragment using either locks or TM.

are challenging to program and debug. Indeed, reasoning about thread-based syn-
chronized programs is difficult in general [28, 125], and even simple formal analyses
that account for inter-thread synchronization are NP-hard [231] or undecidable [193].
In practice, the problem is exacerbated in accelerators like GPUs, because optimizing
for performance is paramount — after all, if it weren’t, the code would be running
on a CPU. In GPUs, this problem is even worse, as the combination of lockstep warp
execution and stack-based branch reconvergence can result in unexpected deadlocks
in code that would be deadlock-free in CPUs [72].

Transactional memory (TM) [96, 228] offers an attractive solution. In contrast
to the imperative style and global dependencies induced by locks, transactions
enable a declarative programming style: the programmer specifies that a given code
block constitutes an atomic transaction and leaves execution details to the runtime
(see Figure 4.1). Typically, the runtime (hardware or software) attempts to execute
transactions optimistically, only aborting and retrying them when conflicts are
detected; writes performed by aborted transactions are not visible to transactions that

46

commit successfully. Because they maintain atomicity and isolation, transactions are
composable [93], and substantially simplify code in complex codebases [200, 259],
leading to many times lower error rates [201]. Recently, hardware-level transactional
memory has appeared in production CPUs from major vendors [44, 90, 106, 107],
as well as in designs and proposals from other significant industry players [52, 60].

Early proposals for hardware-level transactional memory for GPUs solved key
problems of interacting with the SIMT stack [77] and coalescing transactions at warp
level [76]. Both rely on value-based validation, which requires one core↔LLC
round trip to validate each transaction and another round-trip to finalize the commit.
Combined with the massive concurrency present in GPU workloads, these long
latencies create bottlenecks in the commit phase: even if transactional concurrency
is restricted, 700 or more transactions may be queued in the commit phase on
average [77].

Prior proposals have therefore limited transactional concurrency to very few
warps per SIMT core [76, 77]. With few warps, however, the GPU can no longer
effectively amortize commit latencies, so some performance is lost. Another proposal
has been to proactively abort transactions by broadcasting conflict sets from the
LLC back to the SIMT cores [55]; the bandwidth and latency of these broadcasts,
however, limit this approach to extremely long transactions.

In this chapter, we instead propose to directly reduce commit costs by detecting
conflicts eagerly. If conflict detection is performed separately for each memory
access — a latency well within a GPU’s capacity to amortize even with concurrency
throttling — a transaction that arrives at the commit point is guaranteed to commit
successfully. Because there is no need for time-consuming value-based conflict
detection at commit time, the commit itself can be taken off the critical path while
the warp continues execution. To the best of our knowledge, this is the first full
GPU hardware TM proposal with eager conflict detection, and the first to leave
transaction commits out of the critical path.

47

1 2 3

validationLD ST

LD ST commit

SIMT
core

LLC

SIMT
core

LLC 4

1
2
3

temporal conflict check
value-based validation
commit and final ACK

metadata table access

4 4

← GETM (this proposal)

↑ WarpTM (best prior art)

local
commit

Figure 4.2: Messages required for transactional memory accesses and commits
in WarpTM (top) and GETM (bottom).

4.1 GPU Transactional Memory
The state-of-the-art GPU TM,WarpTM [76, 77], combines lazy version management
with lazy, value-based conflict detection.1 Figure 4.2 (top) shows the access and
commit timing.

Firstly, WarpTM modifies the SIMT stacks to allow aborting and restarting
transactions at thread granularity. GPUs execute many (32–64) threads in lockstep
as a single warp; transactions are a thread-level abstraction, however, so it is possible
that some of the threads in the warp commit while other threads abort. WarpTM
adds special Transaction and Retry stack entry types that track which threads aborted
and should run again when the transaction is restarted.

As transactions execute, their memory accesses are sent to a redo log, stored in
the SIMT core’s local memory.2 For each address, loads record the value that was
observed (for later validation), and stores record the newly written value. When the
warp reaches txcommit, a tx log unit traverses the redo log to record all threads
wishing to access each address; this allows the SIMT core to resolve all intra-warp
conflicts and coalesce the warp’s surviving transactions.

At commit time, the read and write logs of the coalesced transaction are sent to
validation/commit units (VUs/CUs) colocated with each LLC bank. Each validation
unit verifies that the value observed by each read in the log corresponds to the

1We discuss other GPU proposals [55, 56, 234] in Chapter 7.3.
2In NVIDIA terminology, a GPU core’s local memory is an address range of the global address

space reserved for that core. As with the rest of the address space, local memory is cached in the GPU
cache hierarchy.

48

current value in the LLC, and sends a success/failure message to the SIMT core.
The core collects these to check whether any addresses failed validation, and sends
a commit/abort confirmation back to the CUs. Each CU then sends the write log
values to the LLC, and acks to the core. Once the core has collected acks from
all CUs, the warp continues execution. Transactional consistency requires each
transaction to be validated and committed atomically, so while one transaction goes
through the two-round-trip validation/commit sequence, other transactions must
wait.

WarpTM also includes a temporal conflict check mechanism (TCD) that allows
read-only transactions to commit silently. A TCD table at the LLC that records the
physical clock cycle number of the last store to each address; the cycle numbers are
updated as transactions commit. Each transactional load is immediately sent from
the SIMT core to this TCD table; if a read-only transaction has only read locations
modified in the past, it is allowed to bypass value-based validation and commit
silently.

Because GETM uses eager conflict detection, transactions that have reached
txcommit are guaranteed to be free of conflicts, and commit without additional
validation or acks.

GETM retains the SIMT stack modifications and warp-level transaction coalesc-
ing of WarpTM. However, it replaces the value-based validation and TCD read-only
silent commits with an eager conflict detection scheme (see Chapter 4.4), which
greatly simplifies the validation/commit unit and substantially reduces the hardware
overhead (see Chapter 4.5 and Chapter 4.7).

4.2 Eager Conflict Detection and GPUs
Although eager conflict detection is more suitable for high-thread-count architectures
(see Chapter 4.3), the lack of a natural conflict detectionmechanism poses a challenge
to implementing eager conflict detection in GPUs. Prior TMs with eager conflict
detection (e.g., LogTM [149, 252]) have targeted CPUs, in which conflicts are
naturally flagged when cache lines are invalidated by the coherence protocol.
Unfortunately, extant GPUs lack hardware cache coherence, so another mechanism
must be designed. Another challenge is scalability, since GPUs have large core

49

counts and many concurrent warps in each core. This precludes, for example,
mechanisms that collect and broadcast read/write signatures.

To provide a scalable eager conflict detection mechanism, we take inspiration
from the software transactional memory system TL2 [65]. TL2 uses a global
version-clock that is incremented by every transaction which writes to memory,
and maintains last-written version-clock values for every memory location. As the
transaction accesses memory, it collects version-clocks for all referenced locations.
At commit time, these clocks are checked to ensure that the transaction observed
a consistent state of memory; if there are no violations, TL2 acquires locks for all
locations it intends to modify and finally writes the memory.

In TL2, logical clocks are used to ensure consistency, but conflict detection is
still performed lazily at commit time. In addition, the global version clock must
be shared among multiple cores, which relies on the underlying cache coherence
protocol. We leverage the idea of providing consistency via logical clocks, but use
them to implement early conflict detection, and design a distributed logical clock
protocol that does not need cache coherence.

We propose GPU Eager Transactional Memory (GETM), a novel GPU hardware
TM design. Unlike prior eager TMs, GETM does not rely on coherence or signature
broadcast. Instead, GETM combines encounter-time write reservations with a
logical timestamp mechanism to detect conflicts as soon as they occur, and to allow
off-critical-path commits.

4.3 GPUs Favour Eager Conflict Detection
In this section, we argue that eager conflict detection is particularly suited to the
large number of threads concurrently executing in a GPU, because the long commit
latencies inherent in lazy detection form a key bottleneck as concurrency grows.
This is not the case for CPUs, where TMs with eager conflict detection, such as
LogTM [149], are outperformed by lazy [51] or partially lazy [233] variants.

To test this intuition, wemodified the state-of-the-artGPUTMdesignWarpTM[76]
to emulate eager conflict detection (cf. Figure 4.2) and examined how it performs as
the number of warps per SIMT core grows. WarpTM uses lazy conflict detection
and lazy versioning (see Chapter 2.2.2 for details), and commits transactions via

50

0.00

0.25

0.50

0.75

1.00

tx
ex

ec
. c

yc
les

WarpTM-LL
WarpTM-EL (ideal)

0.00

0.25

0.50

0.75

1.00
tx

wa
it c

yc
les

1 2 4 8 16 NL
max # warps with active transactions in each SM core (NL = no limit)

0.00

0.25

0.50

0.75

1.00

to
ta

l tx
 cy

cle
s

Figure 4.3: Time per transaction spent executing transactional code (top),
waiting for aborting transactions in the same warp and concurrency limits
(centre), and total time spent in transactions (bottom), as the number of
warps allowed to concurrently run transactions grows. Measurements
from the HT-H hashtable benchmark, normalized to the highest data
point.

two core↔LLC round trips: (i) the transaction log is sent to be value-validated at
the LLC banks; (ii) the LLC sends back validation success/failure status; (iii) the
core collects the responses and (if all banks reported success) instructs the LLC to
start commit; (iv) the LLC banks acknowledge commit completion; (v) the core
can resume executing the relevant warp. Eager conflict detection needs to check
only the currently accessed memory location, but must be repeated for every access;
therefore, to emulate an eager-lazy design, we hacked WarpTM to run validation
(i)–(ii) for every transactional access, with no latency.

Figure 4.3 (top) shows how the original WarpTM (-LL) and idealized eager-lazy
variant (-EL) perform as permitted concurrency grows on the hashtable insertion
workload HT-H. With an increasing number of transactions, the number of cycles
spent executing each transaction (including retries) grows much faster for the variant
with lazy conflict detection than for the eager version. This is because increasing

51

LL E
L

HT-H

0%

25%

50%

75%

100%

to
ta

l
tx

 c
y
cl

e
s

LL E
L

HT-M

LL E
L

HT-L

LL E
L

ATM

LL E
L

CL

LL E
L

CLto

LL E
L

BH

LL E
L

CC

LL E
L

AP

LL E
L

GMEAN

EXEC WAIT

(a) cycle breakdown of transactional segments only

HT-H
0.00

0.25

0.50

0.75

1.00

1.25

1.50

to
ta

l
e
x
e
c

ti
m

e

2.9

HT-M

2.0

HT-L ATM CL CLto BH CC AP GMEAN

FGLock WarpTM-LL WarpTM-EL(ideal)

(b) total execution cycles of whole application (tx and non-tx segments)

Figure 4.4: Benefits of eager conflict detection compared with lazy mecha-
nism and hand-optimized find-grained lock implementations. (Optimal
concurrency is used for all configurations)

concurrency increases conflicts and causes transactions to be retried more times.
For each retry, WarpTM-LL incurs the two round-trip latency of lazy value-based
validation, making each attempt far more expensive than in WarpTM-EL.

Figure 4.3 (centre) shows how long transactions wait to commit, either because
of concurrency throttling or because of waiting for diverged threads in the same
warp to abort the transaction. Because the value-based validations in WarpTM-
LL are expensive, subsequent transactions wait longer than in WarpTM-EL. For
WarpTM-EL, wait time decreases as more warps can execute and cover commit
latency; for WarpTM-LL, however, increasing concurrency increases the commit
queue backup and therefore the total wait cost.

The overall runtime spent in transactions is shown in Figure 4.3 (bottom). This
explains why the optimal concurrency for WarpTM-LL is 2 transactional warps

52

reg
file

thread block
thread block

thread block

shared
mem

L1 D$

mem ifc

tx log unit

validation
unit

commit
unit

last-level
cache bank

DRAM contr.

off-chip DRAM channel

SIMT stacksSIMT core

inter
con-
nect

stall buffer

Figure 4.5: Overall architecture of a SIMT core with GETM. Shaded blocks
are added for transactional memory support.

per SIMT core [76], and demonstrates that eager conflict detection can support
substantially more concurrency with much lower overheads.

Note that this effect is peculiar to architectureswith high thread-level concurrency,
such as GPUs. Most CPUs run 1–2 threads per core, and have few cores per die.
This places them on the left of Figure 4.3 (top), where the lazy and eager versions
execute similar number of transactional cycles.

To quantify the overall performance potential of eager conflict detection, we
simulated a range of TM benchmarks using the lazy and eager variants of WarpTM,
as well as the equivalent non-TM versions using hand-optimized fine-grained locks.
Figure 4.4 (top) shows that execution and wait cycles spent in transactions are
substantially reduced in the eager variant, and Figure 4.4 (bottom) shows that this
translates to faster overall execution time.

4.4 GETM Transactional Memory
In this section, we sketch an overview of howGETMprovides transactional atomicity,
consistency, and isolation, and describe how it tracks the necessary metadata.

The description here focuses on the GETM protocol, how transactions execute,
and how metadata evolves. The high-level architecture is shown in Figure 4.5;
implementation details, including the metadata and queueing data structures present
at the LLC, are described in Chapter 4.5.

4.4.1 Atomicity, Consistency, and Isolation

We first describe the transaction logs that provide atomicity, and then the logical
timestamp and access-time locking mechanisms used to ensure consistency and
isolation.

53

Tracked per warp

warpts the logical time at which transactions from this warp atomically execute

Tracked per LLC cache line

wts one higher than the logical time when this location was last written
rts the logical time when this location was last read
#writes # writes to this location (if non-zero, location is locked by a transaction)
owner the owner of the write reservation (if # writes is non-zero)

Table 4.1: Metadata tracked by GETM.

Transaction logs. As in prior work [76, 77], transactions are managed at warp
level, and each warp keeps a redo log in the SIMT core’s existing local memory.

In contrast to GETM, prior work required sending the entire log (reads and
writes) to the commit units for validation at commit time. Because GETM uses
eager conflict detection, transactions that have reached txcommit are guaranteed
to succeed, and commit-time validation is not necessary. Instead, a committing
transaction transmits only the transactional writes from the redo log (typically a
fraction of the entire log), so that the write data can be stored in the LLC.

In addition to being logged, all transactional accesses are sent to the LLC for
eager conflict detection, using the timestamp and lock mechanisms described below.

Logical timestamps. GETM uses distributed logical timestamps to provide
transactional consistency, and each transaction executes at a specific logical times-
tamp. To guarantee consistency, GETM must ensure that a running transaction
(a) does not observe stale values of locations changed by logically earlier transactions,
(b) does not observe values written by logically later transactions, and (c) does not
alter values already seen by logically later transactions.

The logical timestamps tracked by GETM are shown in Table 4.1. Firstly, each
warp keeps a logical timestamp warpts, corresponding to the memory state observed
by the last transaction. This timestamp starts at 0, and is advanced when transactions
abort (as discussed below). All new transactions started by this warp execute at
logical time warpts.

Each cache line in the shared LLC has a write timestamp wts, equal to one
more than the logical time of the last write, i.e., 1 warpts of the logically latest

54

transaction to attempt a write. If a transaction T attempts to access a cache line L

where L.wts> T.warpts, it means that L was written by a transaction logically later
than T , and T must abort.

Every cache line also contains a read timestamp rts, equal to the logical time
of the last read, i.e., warpts of the last transaction to read it. A transaction T may
read lines with any rts, but writing a cache line L where L.rts > T.warpts would
overwrite a value which has already been observed by a later transaction, and is not
permitted.

The rts and wts timestamps are maintained eagerly: that is, transactional loads
update rts and transactional writes update wts at the time of the request, regardless
of whether the transaction will eventually commit. The updated timestamps are not
reverted if a transaction aborts; while this might unnecessarily abort some future
transactions, those will be restarted, and consistency is not compromised.

Encounter-time locks. Unlike timestamps, transactional write data is not stored
in the LLC until the transaction reaches its commit point. This creates an isolation
problem if a transaction T1 modifies a location and a logically later but physically
concurrent transaction T2 accesses this location: the value that should be seen by T2

depends on whether T1 will commit successfully, but T1 is still in progress.
To avoid this issue, GETM uses locks to prevent T2 from reading the location

until T1 has committed. Each cache line has two additional fields to support this:
#writes and owner (see Table 4.1). When a transaction T first encounters a previously
untouched cache line L, it reserves L by setting L.#writes to 1 and L.owner to the
transaction’s global warp ID (because transactions are coalesced per warp, this
uniquely identifies a running transaction; see Chapter 4.1).

Now when T2 accesses L (either for reading or writing), it must check whether L

has been reserved. If L.#writes ≠ 0 and L.owner ≠ T2, transaction T2 proceeds with
the rts/wts checks described above; if the checks fail then T2 is aborted, otherwise
T2 stalls until T1 commits. (We discuss the stall buffer where stalled transactions are
queued in Chapter 4.5.)

The owner/#writes mechanism also allows a transaction to repeatedly write the
same location. If T is already the owner of a cache line, it bypasses the rts and wts
timestamp checks, and writes the line. This is safe because T must have previously
satisfied the rts and wts timestamp constraints, and updated wts. As any other

55

transaction attempting to update the line since that time would have been stalled,
neither rts and wts could have been altered since T ’s reservation.

Aborts and advancing logical time. The logical time observed by each warp
(warpts) advances when transactions are aborted. When a transaction aborts, it
reports to the core the latest logical timestamp t it attempted to read or write (the
abort cause). Since the transaction will fail again unless it restarts at a time later
than t, warpts is set to t 1.

For example, if a transaction T has aborted because of reading a cache line
L, it must be because the cache line is logically newer than the transaction, i.e.,
L.wts> warpts. In this case, the SIMT core sets warpts to L.wts 1, and T is restarted.
Similarly, if T aborts because of a write, warpts is set to maxL.rts,L.wts 1, and the
transaction restarts.

Commit and cleanup. When all threads in a warp reach the end of the
transaction (commit or abort), the SIMT core serializes the write logs of all threads
and sends them to the LLC. For all threads that have successfully reached the commit
point, the core sends the address, write data, and write count (since multiple writes
may have been coalesced).

Once this commit/abort log is received, each entry is written to the LLC and the
relevant #writes entry is decremented. Once #writes in a cache line has reached 0,
the cache line fully reflects the atomic transaction update, and can now be accessed
by other transactions.

Aborted transactions instead send the address and write count for each modified
cache block to facilitate cleanup. The #writes in each cache line is updated as above;
after #writes has reached 0, the cache line reflects its pre-transaction state, and may
be accessed by other transactions.

The life of a transactional access. Figure 4.6 shows how a transactional read
or write is processed in GETM.

Owner check Ê. If #writes is non-zero but the owner field matches the current
transaction, the line must be locked and the access succeeds Ë. Stores only increment
#writes (since wts was already set by the previous write), while loads potentially
update rts if it is less than warpts.

Timestamp check Ì. A transaction that attempts to load an address and finds its
wts younger than the transaction’s own warpts has detected a WAR conflict – i.e.,

56

CO
M

M
IT

 /
AB

O
RT

: a
t S

M
 c

or
e

1.
 S

er
ia

liz
e

w
rit

e
lo

g
fo

r a
ll

th
re

ad
s

in
 w

ar
p

 –
 fo

r c
om

m
itt

in
g

th
re

ad
s,

 s
en

d
<a

dd
r,

w
rit

e
da

ta
, #

w
rit

es
>

 –
 fo

r a
bo

rti
ng

 th
re

ad
s,

 s
en

d
<a

dd
r,

#w
rit

es
>

2.
 T

ra
ns

m
it

w
rit

e
lo

g
to

 c
om

m
it

un
it

at
 L

LC
 p

ar
tit

io
n

3.
 U

pd
at

e
w

ar
pt

s
to

 m
ax

(w
ar

pt
s,

 o
bs

er
ve

d
rts

, o
bs

er
ve

d
w

ts
) +

 1

CO
M

M
IT

 /
AB

O
RT

: a
t L

LC
 p

ar
tit

io
n

co
m

m
it

un
it

1.
 C

oa
le

sc
e

w
rit

es
 to

 th
e

sa
m

e
ca

ch
e

lin
es

 –
 c

om
bi

ne
 w

rit
e

da
ta

 –
 a

dd
 #

w
rit

es
 fr

om
 e

ac
h

co
al

es
ce

d
op

er
at

io
n

2.
 C

om
m

it
ea

ch
 li

ne

 –

 w
rit

e
lin

e
to

 L
LC

 –
 d

ec
re

m
en

t r
el

ev
an

t #
w

rit
es

 e
nt

ry

w
id

 =
 A

.o
w

ne
r

&
A.

#w
rit

es
 >

 0
?

A.
#w

rit
es

 >
 0

?
w

ar
p

#w
id

:
ST

 A
 @

 w
ar

pt
s

w
ar

pt
s
≥

m
ax

(A
.w

ts
,A

.rt
s)

?

AB
O

RT
 (W

AW
, R

AW
)

re
po

rt
m

ax
(A

.w
ts

,A
.rt

s)

 t
o

co
re

SU
CC

ES
S,

A.
#w

rit
es

++
Q

UE
UE

 @
 L

LC
(W

AW
)

no ye
s

up
da

te
 lo

g,
re

q
to

 L
LC

ye
s

no
no ye

s

SU
CC

ES
S,

A.
w

ts
 =

 w
ar

pt
s+

1,
A.

ow
ne

r =
 w

id
,

A.
#w

rit
es

++

re
try

w
id

 =
 A

.o
w

ne
r

&
A.

#w
rit

es
 >

 0
?

A.
#w

rit
es

 >
 0

?
w

ar
p

#w
id

:
LD

 A
 @

 w
ar

pt
s

w
ar

pt
s
≥

A.
w

ts
?

AB
O

RT
 (W

AR
)

re
po

rt
A.

w
ts

 to
 c

or
e

SU
CC

ES
S,

A.
rts

 =
 m

ax
(w

ar
pt

s,
A.

rts
)

Q
UE

UE
 @

 L
LC

 (R
AW

)

no ye
s

up
da

te
 lo

g,
re

q
to

 L
LC

ye
s

no
no ye

s
SU

CC
ES

S,
A.

rts
 =

 m
ax

(w
ar

pt
s,

A.
rts

) re
try

1

3
1

32 2

4

4

7

5

8

6

5
6

7
8

Fi
gu

re
4.
6:

Th
e
flo

w
ch
ar
tf
or

lo
ad
,s
to
re
,a
nd

co
m
m
it/
ab
or
tl
og

ic
in

G
ET

M
.

57

another transaction with a younger warpts has already written to the location – and
must abort Í. Similarly, a transaction that writes a location but finds either wts or
rts to be younger than warpts must also abort, since a logically younger transaction
has either written the location or observed its value Í.

Abort notification Í. If the version check discovers a conflict, the transaction
must be aborted. To minimize the chances of the transaction aborting again, the
SIMT core is sent the highest timestamp seen so far at the LLC; this will be used to
update warpts and restart the transaction. Meanwhile, the core notes that the thread
has aborted, and will clean up any reservations made when the entire warp reaches
txcommit or when all threads have aborted.

Write lock check Î. Next, the transactional memory operation checks whether
the accessed location has been reserved by another warp (i.e., whether #writes is
non-zero). If not, the operation succeeds without conflict: a load will update rts (if
< warpts) while a store will set #writes to 1 and update the location’s wts with the
transaction’s warpts Ï.

Queue Ð and retry Ñ. Accesses that passed the timestamp check but do not own
the active lock must be logically younger than the lock owner. To avoid unnecessary
aborts, these requests are queued until the owner transaction commits. After the
lock is released, the queued transactions will retry.

4.4.2 Walkthrough Example

Figure 4.7 illustrates how theGETMprotocol operates on two conflicting transactions
from the bank transfer example (Figure 4.1); in this benchmark, accounts aremodelled
as unique memory locations. The first transaction (tx1) transfers some amount from
account A to account B, while the second (tx2) transfers another amount from B to
A. Transaction tx1 starts at warpts = 20, and transaction tx2 starts at warpts = 10.
The central grey line represents the LLC, and the thinner black arrows represent
messages between the cores and the LLC. The interleaving of the accesses from
each transaction has been chosen to illustrate how the eager conflict detection and
queueing mechanisms work; in reality, any interleaving of the two transactions could
occur.

First, tx1 loads and stores location A: the load updates A’s rts to match the

58

LD
 A

@
 2

0
ST

 A
@

 2
0

LD
 B

@
 2

0

LD
 B

@
 1

0
ST

 B
@

 1
0

LD
 A

@
 1

0

ST
 B

@
 2

0
co

m
m

it
@

 2
0

LD
 B

@
 2

2
ST

 B
@

 2
2

LD
 A

@
 2

2
ST

 B
@

 2
2

co
m

m
it

@
 2

2

ab
or

t
@

21
·

·
·

qu
eu

e
at

 L
LC

tx
2

1
2

w
ts

1
tx

1
B

1
rts 20 10

21 11

ta
g

tx
2

w

rit
es

A
ow

ne
r

1

1
rts 10

w
ts

ta
g

tx
2

w

rit
es

ow
ne

r
A

20
11

0
tx

1
21

B
2

tx
1

0
rts 20

w
ts

ta
g

tx
1

w

rit
es

ow
ne

r
A

20
21

0
tx

1
21

B
3

3
LL

C

cl
ea

n
up

Fi
gu

re
4.
7:

A
w
al
kt
hr
ou

gh
ex
am

pl
e
of

ea
ge
rc

on
fli
ct
re
so
lu
tio

n
in

G
ET

M
.

59

transaction’s warpts (i.e., to 20), and the store updates the wts of A to exceed that of
tx1 (i.e., to 21). Then tx2 does the same with B, updating its wts to 11 and rts to 10.
At this point, tx1 and tx2 have accessed disjoint locations and so far do not conflict.
The transaction metadata for addresses A and B at this point are shown in table Ê.

Next, tx2 attempts to read location A, previously altered by tx1. Because
tx2.warpts < A.wts, the load fails the version check and will abort tx2 (cf. Figure 4.6).
The LLC will notify the requesting core that the transaction been aborted, and that
the next warpts should be later than 21. The core will then send the write/abort log
for tx2 to the LLC, which will release the reservation for B by setting the # writes
field to 0. When tx1 now sends load and store requests for B, both requests succeed
since tx2 had an older version and its write lock was cleared as tx2 aborted. At this
point, the metadata for A and B correspond to table Ë.

Transaction tx2 now restarts at the core, with a higher warpts of 22. When its
first load request (for B) arrives at the validation unit, it passes the version check but
finds B reserved; the load is therefore queued in the VU’s stall buffer and will be
retried as the conflicting transaction commits.

Meanwhile, tx1 gets to its commit instruction. Because all of its memory
accesses have passed eager conflict detection, the transaction is guaranteed to
succeed. The core therefore sends the write log to the LLC and moves on. As the
write log is processed, write reservations (#writes) for both A and B are reset. Table
Ì shows the metadata at this point.

Once the commit of tx1 has finished and released the reservations on A and B,
any stalled transaction accesses are retried; in this case, this is the load of B from tx2,
which now succeeds. Transaction tx2 can then continue with its remaining memory
accesses, and will succeed.

4.5 GETM Implementation Details
Adding transactional memory support requires modifications to both the SIMT core
and the memory partition that houses the LLC slice and a memory controller: we
need to modify the core to retry aborted transactions and record redo logs, and to
add validation and commit hardware to each memory partition. Figure 4.5 shows
the overall architecture components of a GPU core extended with GETM.

60

4.5.1 SIMT Core Extensions

SIMT Stack. Adding transactional memory support to a GPU’s cores requires
changing the SIMT stack to track which threads in the warp are executing transactions
and which must be retried. To implement this, we leverage the modified SIMT
stack proposed by Fung et al [77]. This mechanism is similar to branch divergence
hardware [127]: for each warp, the top of the SIMT stack tracks the threads that
are currently executing, while the stack entry immediately below tracks threads that
have aborted and must be retried.

Transaction management. While individual threads can run separate transactions,
commits occur at warp granularity when all threads in the warp have arrived at the
commit point [76]. Nevertheless, transactions remain logically at thread granularity:
when some of the warp’s threads abort, they are automatically retried via the
extended SIMT stack after the entire warp reaches the commit point [77].

Transaction logs. The GETM versioning mechanism is the same as in GPU
transactional memory [77]. Logs are stored in each SIMT core’s local address space,
and cached by the L1/LLC caches. Although GETM only requires a write log, we
also record a read log to permit intra-warp conflict detection [76]; in this technique,
each transactional access is first checked against the local per-warp read and write
logs and aborted if it conflicts with other threads in the same warp. At commit time,
however, the read log is discarded and only the write log is sent to the commit units.

Forward progress. Aborted transactions ensure progress by restarting with a
probabilistically increasing backoff [121].

4.5.2 Validation Unit

GETM protocol actions on the LLC side are carried out by Validation Units (VUs),
one of which is colocated with each LLC bank. Each VU consists of (a) metadata
storage structures to track the last-written and last-read versions for each address,
and (b) a structure to buffer requests that found a location locked but were younger
than the current owner.

61

stash

H

overflow
(in LLC)

H H H H H H H
address

mux min

precise metadata approx. metadatamux

eviction

rtswtstag # writesowner rtswts

Figure 4.8: Transaction metadata table microarchitecture.

Transaction metadata storage

Because GETM explicitly tracks versions to enable eager conflict detection, it must
keep all metadata (wts, rts, # writes, and owner; see Table 4.1) for all locations that
are part of any in-flight transaction, and some metadata (wts and rts) for all locations
that have been (or could be) accessed transactionally.

These requirements pose some challenges: firstly, transactions could be very long
(and, in general, unbounded), so fast access to a potentially large lookup structure is
necessary; secondly, potentially all addresses could be accessed transactionally, and
tracking metadata for them all is impractical.

Our solution relies on two observations. The first is that very long transactions
are likely to be rare in well-tuned code; therefore the metadata table can be sized for
the common case and provide a spillover mechanism (like in Unbounded TM [23]).
The second is that metadata for addresses that are not being written by in-flight
transactions can be maintained approximately provided that the only errors are
overestimates: if the lookup mechanism reports a higher rts or wts, additional
transactions may abort, but correctness will be preserved.

Figure 4.8 shows the microarchitecture of the metadata storage structure. Our
implementation has one such structure at every LLC partition, responsible for the
same address range. It consists of two tables, accessed simultaneously during
lookups: the first tracks precise metadata for addresses accessed by in-flight
transactions, while the second tracks approximate rts and wts for all other addresses.

Precise metadata for in-flight accesses. The precise metadata table is similar to

62

a cuckoo hash table [182], extended with a small stash [115] (conceptually similar
to a victim cache); even a small stash allows the cuckoo table to maintain higher
occupancy with limited resources [115]. When inserting a 〈key, value〉 pair causes
too many swaps in the cuckoo table, the last 〈key, value〉 pair swapped out during
the insertion process is placed in the stash, and during lookups the stash is searched
in parallel with the cuckoo table itself. We use a four-way cuckoo table with four
randomly generated H3 hashes [203] and a 4-entry fully associative stash. To permit
very long transactions, the precise table and stash can spill to an unbounded overflow
space located in main memory and cached in the LLC. In our experiments the
overflow space was never used, so we organized the overflow as a linked list; a
commercial implementation would likely use an asymptotically faster design such
as a balanced tree or another hashtable layer in main memory.

Unlike the original cuckoo table, our design allows the insertion process to
terminate by evicting an entry that has not been reserved by any transaction (i.e.,
writes is zero). Since the remaining metadata — wts and rts — can be safely
approximated, the evicted entry is inserted into the approximate metadata structure
described below.

Approximate metadata for inactive locations. The simplest design for approxi-
mate version tracking is a pair of registers tracking the maximum wts and rts that
have been evicted from the precise table. When a lookup misses in the precise
table, it is reinserted using the approximate wts and rts values from the two registers.
When we conducted experiments with this configuration, however, we found that
the version numbers increased very quickly and caused many aborts.

To combine efficient storage of large numbers of evicted addresses with the
ability to discriminate among many of them, we use a recency Bloom filter [77].
This structure consists of several (in our case, four) ways indexed by different hashes
of the lookup address (we again use H3 hashes). Each address maps to one entry in
each way, and each entry stores the maximum wts and rts of all inserted addresses
that map to it. On insertion, the wts and rts in each way are only updated if they
exceed the stored values (which may have come from a hash collision), and on
lookup the minimum wts and rts among the four ways are returned.

Timestamp rollover. Unlike physical timestamps [76], logical timestamps
advance very slowly. In our experiments, the increment rates ranged from one

63

tag ld/stwidtxver ld/stwidtxver· · ·
tag ld/stwidtxver ld/stwidtxver· · ·

tag ld/stwidtxver ld/stwidtxver· · ·

· · ·

· · ·

· · ·

address
(assoc.
lookup)

to validation unit
(retry access)

min txver for this address

Figure 4.9: Stall buffer microarchitecture.

increment in 1,265 cycles to one in 15,836 cycles, depending on the benchmark. At
this rate and with a 1 GHz clock, 32-bit timestamps will roll over less than once
every 1.5 hours, and 48-bit timestamps will roll over less than once every 11 years.

When a validation unit detects a rollover, it must ensure that (a) all validation
units roll over atomically, and (b) all SIMT cores have rolled over. The first task
can be accomplished via two messages (containing the VU ID to break ties) sent
via a single-wire ring connecting all validation units. The first message indicates
that the recipient should stall and forward the message to its neighbour; all VUs
will be known to have stalled when the message reaches back to the originating
VU. The second message indicates that the recipient should roll over and continue
execution. (Alternately, the existing interconnect can be used for this purpose with
an ack–reply protocol). Cores roll over on a request from the VUs sent over the
interconnect. Once the cores have acked the request, the VU knows that no requests
are in flight; it flushes the stall buffer and metadata tables and resumes.

Stall buffer

Requests that passed the version check but found the address locked are queued in a
stall buffer until the relevant transaction commits or aborts (see Chapter 4.4).

The organization of this structure, shown in Figure 4.9, is similar to a store buffer
or an MSHR, but tracks several requests for each address (from different warps
contending for the same location). When a committing transaction decrements the
#writes count to 0, it checks whether any stall buffer entries are waiting on the
relevant address; if so, the oldest request (i.e., with the minimum warpts) re-enters
the validation unit. If the buffer is full, the transaction aborts.

64

Baseline GPU

SIMT core config 15 cores, 48 × 32-wide warps / core, 2 × 16-wide SIMD
warp scheduler greedy then oldest (GTO)
in-core storage 32,768 registers / core, 16KB shared memory / core
L1 data cache 48KB per core, 128-byte lines, 6-way assoc.
L2 cache (LLC) 128KB / partition, 128-byte lines, 8-way assoc.,
interconnect 2 xbars (1 up, 1 down), 288GB/s each, 5-cycle latency
operating frequency SIMT core: 1400 MHz, interconnect: 1400 MHz,

memory: 924 × 4 (quad-pumped)
GDDR5 6 partitions, 32 queued requests each, FR-FCFS,

Hynix H5GQ1H24AFR timing, total BW 177GB/s
memory scheduling latency L1: 1 cycle; LLC: 330 cycles; DRAM: 200 cycles

Transactional memory support

concurrency (tx warps/core) 1, 2, 4, 8, 16, unlimited (optimal for each benchmark)
operating frequency validation unit: 1400 MHz, commit unit: 700 MHz
metadata storage precise: 4K entries (total) in 4-bank cuckoo HTs, 4-entry stashes

approx.: 1K entries (total) in 4-bank recency Bloom filters
stall buffer 4 lines with 4 entries each, per partition
validation BW 1 request/cycle per partition
commit BW 32B/cycle per partition
intra-warp conflict detection two-phase parallel, 4KB ownership table / tx warp

Table 4.2: Simulated GPU and memory hierarchy for GETM.

4.5.3 Commit-Time Coalescing

The commit unit receives write logs from SIMT cores, coalesces multiple accesses
to the same 32-byte regions, writes the data to the LLC, and decrements the relevant
#writes entries. While coalescing is not needed for correctness, it efficiently uses
the GPU’s wide LLC port.

To coalesce writes, we use a simplified variant of the ring buffer used in
KiloTM [77] andWarpTM [76]. In contrast to these proposals, in GETM the commit
unit receives only the write log, so the buffer can be substantially reduced; we
conservatively size it to half of that in prior work.

4.6 Methodology
Simulation setup. We follow the methodology established in previous GPU
hardware transaction memory proposals [55, 76, 77]. GPGPU-Sim 3.x [31] is used

65

name abbreviation description

Hash Table (CUDA) HT-H populate an 8000-entry hash table
HT-M populate an 80000-entry hash table
HT-L populate an 800000-entry hash table

Bank Account (CUDA) ATM parallel funds transfer (1M accounts)
Cloth Physics[40] (OpenCL) CL cloth physics (60K edges)

CLto tx-optimized version of CL
Barnes Hut [42] (CUDA) BH build an octree (30K bodies)
CudaCuts [235] (CUDA) CC image segmentation (200×150 pixels)
Data Mining [110] (CUDA) AP data mining (4000 records)

Table 4.3: Benchmarks used for GETM evaluation.

to simulate the GPU and modified to implement GETM and prior proposals. We
estimated area and power overheads of the structures required to implement TM
by modelling them in CACTI 6.5 [154], conservatively assuming that all structures
are accessed every cycle and accounting for the higher validation unit clock. We
assumed a 32nm node (the smallest supported by CACTI 6.5).

Table 4.2 describes the simulation setup. For fair comparison of the eager
conflict detection mechanism with the value-based detection from prior proposals,
we keep the same baseline: a GPGPU similar to NVIDIA’s GTX480 (Fermi [165])
with 15 cores, 6 memory partitions, and latencies derived from microbenchmark
studies [241]. To investigate scalability to higher core counts, we also simulated
a configuration with 56 cores in 28 clusters, and a 4MB L2 cache in eight 8-way
banks; for WarpTM, we doubled the recency filter size, and for GETM we doubled
only the precise metadata table.

Baselines. We compare GETM against WarpTM [76], and an idealized im-
plementation of the EarlyAbort/Pause-n-Go (EAPG) proposal [55].3 We use TM
benchmarks from prior work [76, 77]; they are summarized in Table 4.3.

3Specifically, write signatures broadcast to cores were idealized as 64-bit messages, refcount table
updates on the LLC side were idealized to one cycle for the entire tx log, and the early conflict check
was made instant.

66

W
T
M

E
A

P
G

G
E
T
M

HT-H

0%

20%

40%

60%

80%

100%

120%

to
ta

l
tx

 c
y
cl

e
s

W
T
M

E
A

P
G

G
E
T
M

HT-M

W
T
M

E
A

P
G

G
E
T
M

HT-L

W
T
M

E
A

P
G

G
E
T
M

ATM

W
T
M

E
A

P
G

G
E
T
M

CL

W
T
M

E
A

P
G

G
E
T
M

CLto

W
T
M

E
A

P
G

G
E
T
M

BH

W
T
M

E
A

P
G

G
E
T
M

CC

W
T
M

E
A

P
G

G
E
T
M

AP

W
T
M

E
A

P
G

G
E
T
M

GMEAN

EXEC WAIT

Figure 4.10: Transaction-only execution andwait time, normalized toWarpTM
baseline (lower is better). Note that EAPG is idealized.

HT-H
0.0

0.5

1.0

1.5

to
ta

l
e
x
e
c

ti
m

e

2.9 3.3

HT-M

2.0 2.5

HT-L ATM CL

1.6

CLto BH CC AP GMEAN

FGLock WarpTM EAPG (ideal) GETM

Figure 4.11: Program execution time normalized to the fine-grained lock
baseline, including transactional and non-transactional parts (lower is
better).

4.7 Evaluation Results

4.7.1 Performance Analysis

Figure 4.10 shows the total number of cycles spent executing transactions and
waiting for other transactions to finish, normalized to the WarpTM baseline. For
most workloads, GETM reduces both transaction execution time and wait time.
CC and AP have contention over few memory locations, and GETM sees many
aborts; because commits and aborts are cheap in GETM, however, this is still faster
than WarpTM and EAPG. In CC and AP, transactions spend little time waiting
because they account for a small portion of the total runtime. We find that, for these
benchmarks, even idealized EAPG is ineffective, as only 5.2% aborts come from

67

HT-H
0.0

0.5

1.0

1.5

2.0

to
ta

l
x
b
a
r

tr
a
ff

ic

2.1

HT-M HT-L ATM CL CLto BH CC

3.2

AP GMEAN

WarpTM EAPG (ideal) GETM

Figure 4.12: Crossbar traffic load normalized to WarpTM (lower is better).

HT-H
0.0

0.5

1.0

1.5

2.0

a
v
g
.

#
 a

cc
e
ss

 c
y
cl

e
s

HT-M HT-L ATM CL CLto BH CC AP AVG

Figure 4.13: Mean latency of the cuckoo table in the metadata storage structure
(≥ 1.0, lower is better).

the early-abort mechanism and 1.3% transactions are ever paused. Essentially, by
the time a broadcast update reaches the cores, most conflicting transactions have
already been sent for validation/commit. In fact, EAPG underperforms WarpTM
because the additional early-abort broadcasts congest the core↔LLC interconnect
(even though these are idealized as single header-only flits). We expect that EAPG
can be effective only with extremely long transactions.

Overall performance is shown in Figure 4.11: on average, GETM outperforms
WarpTM by 1.2× (gmean) and is within 7% of the fine-grained lock baseline. The
trend mirrors that of the transactional execution and wait time above. Benchmarks
with high contention benefit more, because GETM aborts doomed transactions
without the need to queue at the LLC for value-based validation, and show substantial
improvements (up to 2.1× forHT-H). Low-contentionworkloads perform comparably
to WarpTM.

68

HT-H
0.0

0.2

0.4

0.6

0.8

1.0

1.2

to
ta

l
e
x
e
c

ti
m

e

HT-M HT-L ATM CL CLto BH CC AP GMEAN

GETM-2K GETM-4K GETM-8K

(a) sensitivity to metadata table size

HT-H
0.0

0.2

0.4

0.6

0.8

1.0

1.2

to
ta

l
e
x
e
c

ti
m

e

HT-M HT-L ATM CL CLto BH CC AP GMEAN

GETM-128B
GETM-64B

GETM-32B
GETM-16B

(b) sensitivity to metadata tracking granularity

Figure 4.14: Performance sensitivity of GETM to metadata table size and
tracking granularity, normalized to a WarpTM baseline (lower is better).

The improved performance comes at aminor cost in interconnect traffic compared
toWarpTM (Figure 4.12). Although GETM does not need to transmit the transaction
read log at commit time, it needs to acquire locks for every write at encounter
time, whereas WarpTM only contacts the TCD for loads. In addition, despite better
performance, GETM has a higher abort rate, which adds to the interconnect traffic
load.

4.7.2 Sensitivity Analysis

Because the validation unit contains a cuckoo-like structure where worst-case
insertions can take many cycles, we measured the average number of validation
unit cycles spent on accessing the metadata tables for each request (Figure 4.13).
The combination of allowing evictions to the approximate table and the small stash
makes insertions very efficient. Even under very high load factors (> 99%), long

69

HT-H
0

4

8

12

m
a
x
 s

ta
ll

b
u
ff

e
r

si
ze

HT-M HT-L ATM CL CLto BH CC AP AVG

Figure 4.15: The maximum number of addresses queued at any given time
(total of all stall buffers in the GPU).

HT-H
0.0

0.5

1.0

1.5

st
a
lle

d
 r

e
q
u
e
st

s
/

a
d
d
r

HT-M HT-L ATM CL CLto BH CC AP AVG

Figure 4.16: The average number of requests per address that concurrently
reside in the stall buffer.

insert chains where all entries have #writes > 0 are very unlikely; when they do
occur, the stash is effective as predicted theoretically [115].

We also investigated the effect of changing metadata table sizes and granularity
(Figure 4.14); we tested 2K, 4K, and 8K entries GPU-wide, and 16, 32, 64, and
128-byte granularity assuming 4K table entries GPU-wide. A 2K metadata footprint
is too small (and, indeed, requires a larger stash), especially when parallelism is
abundant (e.g., HT-H); because 8K entries do not significantly outperform 4K entries,
we settled on 4K entries for other parts of the evaluation. Decreasing granularity
generally improves performance because false sharing is reduced; however, it also
reduces effective table size when parallelism is high and the total number of addresses
accessed is higher. We chose 32-byte granularity for all other tests.

Since requests that pass the timestamp check but find their target location reserved
are queued in the stall buffer, we measured stall buffer performance. Figure 4.15

70

best concurrency aborts / 1K commits

WTM EAPG WTM-EL GETM WTM EAPG WTM-EL GETM
HT-H 2 2 8 8 119 113 122 460
HT-M 8 4 8 8 98 84 83 172
HT-L 8 4 8 8 80 78 78 207
ATM 4 4 4 4 27 26 25 114
CL 2 2 4 4 93 91 119 205
CLto 4 2 4 4 110 61 72 176
BH 2 2 8 ∞ 93 86 145 865
CC ∞ ∞ ∞ ∞ 6 5 1 38
AP 1 1 1 1 231 237 204 9188

Table 4.4: Optimal concurrency (# warp transactions per core) settings and
abort rates for different workloads. (WTM = WarpTM.)

HT-H
0.00

0.25

0.50

0.75

1.00

1.25

1.50

to
ta

l
e
x
e
c

ti
m

e

3.3

HT-M

4.0

HT-L

3.8

ATM

2.4

CL

1.6

CLto

1.8

BH

2.3

CC

1.7

AP GMEAN

2.2

WarpTM
EAPG (ideal)

GETM
WarpTM-56Core

EAPG (ideal)-56Core
GETM-56Core

Figure 4.17: Program execution time in 15-core and 56-coreGPUs, normalized
to 15-core WarpTM (lower is better).

shows the maximum total occupancy of all stall buffers; this never rises above 12
requests across the entire GPU. Figure 4.16 shows that very few requests are queued
up on average for any given address. In the rest of the evaluation, we conservatively
sized the stall buffers to 4 addresses with space for 4 requests each.

4.7.3 Transaction Abort Rates

Both WarpTM and GETM limit transactional concurrency to optimize performance.
Table 4.4 lists the best concurrency settings for each benchmarks — i.e., the number
of warps in each core allowed to run transactions concurrently — and the resulting
number of aborted transactions. With abundant parallelism (e.g., HT-H), GETM

71

element area [mm2] power [mW]

WarpTM

CU: LWHR tables (3KB×6) 0.108 21.84
CU: LWHR filters (2KB×6) 0.03 12.00
CU: entry arrays (19KB×6) 0.402 100.62
CU: read-write buffers (32KB×6) 1.734 132.48
TCD: first-read tables (12KB×15) 0.375 113.25
TCD: last-write buffer (16KB total) 0.031 9.86

total WarpTM 2.68 390.05

EAPG (in addition to WarpTM)

CAT: Conflict Address Table (12KB×15) 0.6 153.3
RCT: Reference Count Table (15KB×6) 0.294 75.6

total EAPG 3.574 618.95

GETM (independent of WarpTM)

CU: write buffers (16KB×6) 0.522 85.56
VU: precise tables (64KB total) 0.181 69.59
VU: approximate tables (8KB total) 0.018 8.51
warpts tables (192B×15) 0.015 10.65
stall buffer (30B×4×6) 0.0004 2.67

total GETM 0.736 176.98

Table 4.5: CACTI area and power (dynamic + static) estimates for
WarpTM [76], EAPG [55], and GETM overheads (32nm node). CU:
commit unit; TCD: temporal conflict detection; VU: validation unit.

is efficient at higher concurrency than WarpTM. The eager conflict detection in
GETM also translates to dramatically faster commits and aborts than the value-based
conflict detection in WarpTM, so GETM can handle higher abort rates and still
perform substantially better.

4.7.4 Scalability

To investigate scalability at higher core counts, we also simulated WarpTM and
GETM in a configuration with 56 SIMT cores and a 4MB LLC; Figure 4.17 shows
the results. While performance differences vary slightly per benchmark, the overall
trends match the 15-core setup.

72

4.7.5 Area and Power Cost

Table 4.5 shows the area and power overheads introduced by adding TM support.
Because GETM removes most of the structures needed by WarpTM, it has 3.6×
lower area overheads and 2.2× lower power overheads (4.9× and 3.6× lower than
EAPG). Overall, GETM adds ∼0.2% area to a GTX 480 die scaled down to 32nm.

4.8 Summary
In this chapter, we presentGETM, the first fullGPU transactionalmemorymechanism
with eager conflict resolution. By combining explicit version tracking with encounter-
time write reservations, GETM enables efficient conflict detection and off-the-
critical-path commits. GETM is up to 2.1× faster than the state-of-the-art GPU TM
(1.2× gmean), while incurring 3.6× lower area overheads and 2.2× lower power
overheads.

73

Chapter 5

Cache Coherence Protocol for
Hierarchical Multi-GPU Systems

This chapter studies cache coherence protocol across multi-GPU systems for inter-
GPU peer caching. We propose HMG, a hardware-managed cache coherence proto-
col designed to extend coherence guarantees across forward-looking Hierarchical
Multi-GPU systems with scoped memory consistency models. Unlike prior CPU
and GPU protocols that enforce multi-copy-atomicity and/or track ownership within
the protocol, HMG eliminates transient states and/or extra hardware structures
that would otherwise be needed to cover the latency of acquiring write permis-
sions [216, 221]. HMG also filters out unnecessary invalidation acknowledgment
messages, since a write can be processed instantly if multi-copy-atomicity is not
required. Similarly, unlike prior work that filters coherence traffic by tracking the
read-only state of data regions [216, 253], HMG relies on precise but hierarchical
tracking of sharers to mitigate the performance impact of bandwidth-limited inter-
GPU links without adding unnecessary coherence traffic. In a 4-GPU system, HMG
improves performance over a software-controlled, bulk invalidation-based coherence
mechanism by 26% and over a non-hierarchical hardware cache coherence protocol
by 18%, thereby achieving 97% of the performance of an idealized caching system.

As the demand for GPU compute continues to grow beyond what a single die can
deliver [57, 91, 105, 215], GPU vendors are turning to new packaging technologies
such as Multi-Chip Modules (MCMs) [29] and new networking technologies such

74

GPM GPM

GPM GPM

D
R

A
M

MCM-GPU

Multi-GPU System

GPU GPU GPU

NVSwitchNVSwitch NVSwitchNVSwitch NVSwitchNVSwitch

GPU GPU GPU GPU

GPU

D
R

A
M

D
R

A
M

D
R

A
M

Figure 5.1: Forward-looking multi-GPU system. Each GPU has multiple GPU
Modules (GPMs).

as NVIDIA’s NVLink [160] and NVSwitch [162] and AMD’s xGMI [1] in order to
build ever-larger GPU systems [170, 173, 174]. Consequently, as Figure 5.1 depicts,
modern GPU systems are becoming increasingly hierarchical. However, due to
physical limitations, the large bandwidth discrepancy between existing inter-GPU
links [1, 160] and on-package integration technologies [187] can contribute to Non-
Uniform Memory Access (NUMA) behavior that often bottlenecks performance.
Following established principles, GPUs use aggressive caching to recover some of
the performance loss created by the NUMA effect [29, 143, 253], and these caches
are kept coherent with lightweight coherence protocols that are implemented in
software [29, 143], hardware [221, 253], or a mix of both [216].

GPU originally assumed that inter-thread synchronization would be coarse-
grained and infrequent, and hence they adopted a bulk-synchronous programming
model (BSP) for simplicity. This paradigm disallowed any data communication
among Cooperative Thread Arrays (CTAs) of active kernels. However, in emerging
applications, less-restrictive data sharing patterns and fine-grained synchroniza-
tion are expected to be more frequent [43, 54, 113, 217]. BSP is too rigid and
inefficient to support these new sharing patterns. To extend GPUs into more
general-purpose domains, GPU vendors have released very precisely-defined scoped
memory models [2, 98, 112, 135]. These models allow flexible communication
and synchronization among threads in the same CTA, the same GPU, or anywhere
in the system, usually by requiring programmers to provide scope annotations

75

o
v
e
rf

e
a
t

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

M
in

iA
M

R

A
le

x
N

e
t

3.1 3.1 3.2

C
o
M

D

H
P
G

M
G

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

n
a
m

d
2

.1
0

re
sn

e
t

m
st

n
w

-1
6

K

ls
tm

3.4 3.5 4.0

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

3.7 3.6 4.4

b
fs

sn
a
p

R
N

N
_W

G
R

A
D

3.3 3.4 7.1

G
e
o
M

e
a
n

Non-Hierarchical SW Coherence Non-Hierarchical HW Coherence Idealized Caching w/o Coherence

Figure 5.2: Benefits of caching remote GPU data under three different pro-
tocols on a 4-GPU system with 4 GPMs per GPU, all normalized to a
baseline which has no such caching.

for synchronization operations. Scopes allow synchronization and coherence to
be maintained entirely within a narrow subset of the full-system cache hierarchy,
thereby delivering improved performance over system-wide synchronization en-
forcement. Furthermore, unlike most CPU memory models, these GPU models
are now non-multi-copy-atomic: they do not require that memory accesses become
visible to all observers at the same logical point in time. As a result, there is room
for forward-looking GPU cache coherence protocols to be made even more relaxed,
and hence capable of delivering even higher throughput, than protocols proposed in
prior work (as outlined in Chapter 5.4).

Previously explored GPU coherence schemes [18, 29, 95, 143, 195, 216, 221,
253] were well tuned for GPUs and much simpler than CPU protocols, but few
have studied how to scale these protocols to larger multi-GPU systems with deeper
cache hierarchies. To test their efficiency, we simply apply the existing software
and hardware coherence protocols GPU-VI [221] on a 4-GPU system, in which
each GPU consists of 4 separate GPU Modules (GPMs). These protocols do not
account for architectural hierarchy; we simply extend them as if the system were a
flat platform of 16 GPMs. As Figure 5.2 shows, in hierarchical multi-GPU systems,
existing non-hierarchical software and hardware VI coherence protocols indeed
leave plenty room for improvement; see Chapter 5.4 for details. We therefore
ask the following question: how do we extend existing GPU coherence protocols

76

across multiple GPUs while simultaneously providing high-performance support
for flexible fine-grained synchronization within emerging GPU applications, and
without a dramatic increase in protocol complexity? In this chapter, we answer this
question with HMG, a hierarchical cache coherence protocol that is able to scale
up to large multi-GPU systems, while nevertheless maintaining the simplicity and
implementability that made prior GPU cache coherence protocols popular.

5.1 Emerging Programs Need Fine-Grained
Communication

Nowadays, many applications contain fine-grained communication between CTAs
of the same kernel and/or of dependent kernels [53, 58, 83, 118, 130, 184, 258].
For example, in RNNs, abundant inter-CTA communication exists in the neuron
connections between continuous timesteps [64]. In the simulation of molecule
or neutron dynamics [184, 258], inter-CTA communication is necessary for the
movement dependency between different particles and different simulation timesteps.
Graph algorithms usually dispatch vertices among multiple CTAs or kernels that
need to exchange their individual update to the graph for the next round of computing
until they reach convergence [91, 118]. We provide more details on the workloads
we study in Chapter 5.7. All these applications can benefit from a hierarchical GPU
system for higher performance and from the scoped memory model for efficient
inter-CTA synchronization enforcement.

5.2 GPU Weak Memory Model
In the section, to avoid confusion around the term “shared memory”, which is used
to describe scratchpad memory on NVIDIA GPUs, we use “global memory” for the
virtual address space shared by all CPUs and GPUs in a system.

BothCUDAandOpenCLoriginally supported a coarse-grained bulk-synchronous
programming model. Under this paradigm, data sharing between threads of the same
CTA could be performed locally in the shared memory scratchpad and synchronized
using CTA execution barriers; but inter-CTA synchronization was permitted only
between dependent kernel calls (i.e., where data produced by one kernel is consumed
by the following kernels). They could not, with guaranteed correctness, perform

77

arbitrary communication using global memory. While many GPU applications work
very well under a bulk-synchronous model with rare inter-CTA synchronizations, it
quickly becomes a limiting factor for the types of emerging applications described
in Chapter 5.1.

To support data sharing more flexibly and more efficiently, both CUDA and
OpenCL have shifted from bulk-synchronous models to more general-purpose
scoped memory models [2, 98, 112, 135, 168]. By incorporating the notion of scope,
these new models allow each thread to communicate with any other threads in the
same CTA (.cta), the same GPU (.gpu), and anywhere in the system (.sys)1.
Scope indicates the set of threads with which a particular memory access wishes
to synchronize. Synchronization of scope .cta is performed in the L1 cache of
each GPU Streaming Multiprocessor (SM); synchronizations of scope .gpu and
.sys are processed through the GPU L2 cache and via the memory hierarchy of
the whole system, respectively.

5.3 Existing GPU Cache Coherence
Some GPU protocols advocate for strong memory models, and hence they propose
sophisticated cache coherence protocols capable of delivering good performance
[195]. Most other GPU protocols enforce variants of release consistency by
invalidating possibly stale values in caches when performing acquire operations
(implicitly including the start of a kernel), and by flushing dirty data during release
operations (implicitly including the end of a kernel). Much of the research in the
area today proposes optimizations on top of these basic principles. We broadly
classify this work by whether reads or writes are responsible for invalidating stale
data.

Among read-initiated protocols, hLRC [18] elided unnecessary cache invali-
dations and flushes by lazily performing coherence actions when synchronization
variables change registration. Furthermore, the recent proposals of DeNovo [216]
and VIPS [117] can protect read-only or private data from invalidation. How-
ever, they incur additional overheads and/or require software changes to convey

1We use NVIDIA terminology in this chapter. Equivalent scopes in HRF are work-group, device,
and system [98].

78

region information for read-only data, ownership tracking in word granularity, or
coarse-grained (memory page level)2 private/shared data classification.

As for write-initiated cache invalidations, previous work has observed that
MESI-like coherence protocols are a poor fit for GPUs [95, 221]. QuickRelease [95]
reduced the overhead of cache flush by enforcing the partial order of writes with a
FIFO. However, QuickRelease needs to partition the resources required by reads
and writes; it also broadcasts invalidations to all remote caches. GPU-VI [221] is
a simple yet effective hardware cache coherence protocol, but it predated scoped
memory models and introduced extra overheads to enforce multi-copy-atomicity,
which is no longer necessary. Also, GPU-VI was proposed for use within a single
GPU, and did not consider the added complexity of having various bandwidth tiers.

5.4 The Novel Coherence Needs of Modern Multi-GPU
Systems

To scale coherence across multiple GPUs, the design of HMG not only considers the
architectural hierarchy of modern GPU systems (Figure 5.1), but also aggressively
takes advantage of the latest scoped memory models (Chapter 5.2). Before diving
into the details of HMG, we first describe our main insights below.

5.4.1 Extending Coherence to Multiple GPUs

As described in Chapter 5.3, prior GPU coherence protocols mainly focused on
mechanisms that mitigate the impact of bulk cache invalidations. However, as
Figure 5.2 shows, even fine-grained hardware VI cannot close the gap between
what non-hierarchical protocols achieve and an idealized caching scenario. In
future multi-GPUs, larger shared L2 caches will only amplify the cost of coarse-
grained cache invalidations and of reloading invalidated data from remote GPUs via
bandwidth-limited links. Indeed, Figure 5.3 shows that it is common for multiple
GPMs on the same GPU to redundantly access a common range of addresses stored
on remote GPUs. We therefore build HMG as a hierarchical protocol capable of
being extended across multiple GPUs.

2GPUs need large pages (e.g., 2MB) to ensure high TLB coverage. Smaller pages can cause severe
TLB bottlenecks [30].

79

o
v
e
rf

e
a
t

0%

25%

50%

75%

100%

%
 o

f
p
o
ss

ib
ly

 r
e
d
u
ce

d
p
e
e
r

G
P
U

 l
o
a
d
s

M
in

iA
M

R

A
le

x
N

e
t

C
o
M

D

H
P
G

M
G

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

n
a
m

d
2

.1
0

re
sn

e
t

m
st

n
w

-1
6

K

ls
tm

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

b
fs

sn
a
p

R
N

N
_W

G
R

A
D

A
v
g

Figure 5.3: Percentage of inter-GPU loads destined to addresses accessed by
another GPM in the same GPU.

There has been much research into hierarchical cache coherence for CPUs.
However, unlike GPUs, CPUs usually enforce a stronger memory model (e.g., TSO)
and have much stricter latency requirements. As such, CPU coherence protocols
such as MESI track ownership to exploit write data locality [86, 126, 153]. Many
transient states are added to reduce the coherence stalls, resulting in prohibitive
verification complexity [155, 224]. Industrial products implementedmore aggressive
optimizations. For example, Sun’s WildFire had special OS support for memory
page replication and migration [88]. Intel’s Skylake introduced IO directory cache
and HitMe cache to reduce memory access latency [153]. These complexities are
appropriate for latency-bound CPUs, but GPUs permit far more relaxed memory
behavior, and hence HMG shows that the costs of such CPU-like protocols remain
unnecessary for multi-GPUs.

5.4.2 Leveraging GPUWeak Memory Models

Besides the change of hardware architecture, scoped GPU memory models also
inform the design of a good GPU coherence hierarchy. While non-scoped CPU
memory models require all memory accesses to be kept coherent, GPU memory
models that do explicitly expose scopes as part of the programming model require
coherence to be enforced only at synchronization boundaries, and only with respect
to other threads in the scope in question. The NVIDIA GPU memory model
makes this relaxed nature of coherence very explicit [135]. A common pattern in
multi-GPU applications will be for CTA or kernels running on a single GPU to

80

synchronize with each other first, and with kernels on other GPUs less frequently.
Such patterns rely heavily on the comparative efficiency of .gpu scope over .sys
scope; while some prior work has concluded that scopes are unnecessary within a
single GPU [216], the latency/bandwidth gap between the broadest and narrowest
scope is an order of magnitude larger in multi-GPU environments.

Furthermore, although some prior work has proposedmulti-copy-atomicmemory
models for GPUs [16], recent GPU scoped memory models have since formalized
the lack of such a requirement [98, 135]. Loosely speaking, multi-copy-atomicity
requires memory to behave as if it were a single atomic unit, with only thread-private
buffering allowed between cores and memory. As GPUs share an L1 cache across an
SM, GPUs today are not multi-copy-atomic. Multi-copy-atomicity also can create
apparent delays for subsequent memory accesses. Most CPUs enforce multi-copy-
atomicity by using sophisticated coherence protocols with many transient states and
by using out-of-order execution and speculation to hide the latency overheads. Some
prior studies have found that single-GPU coherence protocols can also tolerate multi-
copy-atomicity. For example, to reduce stalls, GPU-VI [221] added 3 and 12 transient
states and 24 and 41 coherence state transitions in the L1 and L2 caches, respectively.
In multi-GPU environments, however, the round trip time to remote GPUs is an
order of magnitude larger and would put significantly increased pressure on the
coherence protocol’s ability to hide the latency. Instead, by leveraging non-multi-
copy-atomicity, HMG eliminates transient states and invalidation acknowledgments
altogether.

5.5 Baseline Non-Hierarchical Cache Coherence
We now describe how a non-hierarchical cache coherence (NHCC) protocol can
be optimized for modern weak GPU memory models. Like most scoped protocols,
NHCC propagates synchronization memory accesses to different caches according
to the user-provided scope annotations. As compared to GPU-VI [221], NHCC
eliminates all transient states and most invalidation acknowledgments. However, it
does not consider the architectural hierarchy. As such, it will serve as our baseline
during our later evaluations. In the next section, we will extend NHCC with a notion
of hierarchy so that it scales better on larger multi-GPU systems like Figure 5.1.

81

GPM1SMs + L1 $ SMs + L1 $

SMs + L1 $ SMs + L1 $ GPM3

D
R

A
M

GPM2

GPM0

X

B

A

R

X

B

A

R

X

B

A

R

X

B

A

R

L2 $L2 $

L2 $L2 $

L2 $L2 $

L2 $L2 $

D
R

A
M

D
R

A
M

D
R

A
M

Figure 5.4: Future GPUs will consist of multiple GPU Modules (GPMs), and
each GPM might be a chiplet in a single package.

5.5.1 Architectural Overview

A high-level diagram of our baseline single-GPU architecture for NHCC is shown
in Figure 5.4. We assume L1 caches remain software-managed and write-through,
as in GPUs today. Each GPU Module (GPM) has an L2 cache that holds both local
and remote-GPM DRAM accesses contending for cache capacity with a typical
replacement policy such as Least Recently Used (LRU). To support hardware
inter-GPM coherence, one GPM in the system is chosen by some hash function as
the home node for any given physical address. The home node always contains the
most up-to-date value at each memory location.

Like many protocols, NHCC attaches an individual directory to every L2
cache within each GPM. The coherence directory is organized as a traditional
set-associative structure. Each directory entry tracks the identity of all GPM sharers,
along with coherence state. Like GPU-VI [221], each line can be tracked in one
of two stable states: Valid and Invalid. However, unlike GPU-VI, NHCC does not
have transient states, and it requires acknowledgments only for release operations.
Non-synchronizing stores (i.e., the vast majority) do not require acknowledgments
in NHCC.

82

Data Cache Data Cache

Coherence

Directory
Data Cache

Coherence

Directory

Data CacheData Cache

Coherence

Directory
Data Cache

Coherence

Directory

L2 in GPM0 L2 in GPM1

L2 in GPM2 L2 in GPM3

Cached A
Cached BCached B

Cached ACached A

V:A:[GPM2, GPM3]

V:B:[GPM1]
Cached ACached A

Coherence directory entry format is State:Addr:[Sharers]

Cached C

Home of A Home of C

Home of B

Figure 5.5: NHCC coherence architecture. The dotted yellow boxes are the
L2 caches from Figure 5.4. The shaded gray cache lines and directory
entries indicate lines for which the GPM in question is the home node.

We assume a non-inclusive inter-GPM L2 cache architecture to enable data to
be cached freely across the different GPMs. Figure 5.5 shows an example in which
GPM0 serves as the home node for address A. Other GPMs may cache the value at
A locally, but GPM0 maintains the authoritative copy. In the same figure, address
B is cached in GPM1, even though GPM3 (the home node for B) is not caching
B. Similarly, data can be cached in the home node only, as with address C in our
example in Figure 5.5.

In NHCC, explicit coherence maintenance messages (i.e., cache invalidations)
are sent only in two cases: when there is read-write sharing between CTAs on
different GPMs, and when there is a directory capacity eviction. The fact that most
memory accesses incur no coherence overhead ensures that the GPU does not deviate
from peak throughput in the GPU common case where data is either read-only or
CTA-private. We measure the impact of coherence messages in Chapter 5.8.

To explain the basics of NHCC, we track the life of a memory reference as an
example. First, a memory access from the SM queries the L1 cache. Upon a L1
miss or write, the request is routed to the local GPM L2 cache. If the request misses
in the L2 (or writes to L2, again assuming a write-through policy), the address is

83

State Local Local Remote Remote Replace InvalidationLd St/Atom Ld St/Atom Dir Entry
add s to add s to

I - - sharers, sharers, N/A -
→V →V

inv all add s to
sharers

add s to inv all forward inv to all
V - sharers, sharers, inv sharers, sharers (HMG only),

→I other sharers →I →I

Table 5.1: NHCC and HMG coherence directory transition table. s refers to
the sender of the message.

checked to determine if the local GPM is the home node for this reference. If so, the
request is routed to local DRAM. Otherwise, the request is routed to the L2 cache of
the home node via the inter-GPM links. The request may then hit in the home node
L2 cache, or it may get routed through to that particular GPM’s off-chip memory.
We provide full details below.

5.5.2 Coherence Protocol Flows in Detail

Table 5.1 details the full operation of NHCC. In this table, “local” refers to operations
issued by the same GPM as the L2 cache which is handling the request. “Remote”
requests are those originally issued by other GPMs. We walk through the entries in
the table below.

Local Loads: When a local load request reaches the local L2 cache partition,
if it hits, a reply is sent back to the requester directly. If the request misses, the
next destination depends on where the data is mapped by the address hash function.
If the local L2 cache partition happens to be the home node for the address being
accessed, the request will be sent to DRAM. Otherwise, the load request will be
forwarded to the home node. Loads with .gpu or .sys scope must always miss in
the L1 cache and in the non-home L2 caches to guarantee forward progress.

Local Stores: Depending on L2 design, local stores may be stored as dirty data
in the L2 cache, or alternatively they may be written through and stored as clean data
in the L2 cache. All stores with scope greater than .cta (i.e., .gpu and .sys)
must be written through in order to ensure forward progress. Data which is written
back or written through the L2 is sent directly to DRAM if the local L2 cache is the
home node for the address in question, or it is relayed to the home node otherwise.

84

If the local GPM is the home node and the coherence directory has recorded any
sharers for the address in question, then these sharers must be notified that the data
has been changed. As such, a local store triggers an invalidation message being sent
to each sharer. These invalidations propagate in the background, off the critical path
of any subsequent reads. There are no invalidation acknowledgments.

Remote Loads: When a remote load arrives at the local home L2 cache, it
either hits in the cache and returns data to the requester, or it misses and forwards
the request to DRAM. The coherence directory also records the ID of the requesting
node. If the line is already being tracked, the requesting ID is simply added as an
additional sharer. If the line is not being tracked yet, a new entry is allocated in the
directory, possibly by evicting another valid entry (discussed further below).

Remote Stores: Remote stores that arrive at a home L2 are cached and written
through or written back to DRAM, depending on the configuration of the L2. Since
the requesting GPM may also be caching the stored data, the requester is recorded
as a sharer. Since the data has been changed, all other sharers should be invalidated.

Atomics and Reductions: Atomic operations must always be performed at the
home node L2. From a coherence transition perspective, these operations are treated
as stores.

Invalidations: Upon receiving an invalidation request, any local clean copy of
the address in question is invalidated. No acknowledgment needs to be sent.

Directory Entry Eviction/Replacement: Because the coherence directory is
implemented as a set-associative cache, there may be entry evictions due to capacity
and conflict misses. To ensure correctness, invalidation messages must be sent to all
sharers of the entry that is being evicted. As with invalidations triggered by stores,
these invalidations propagate in the background and do not require acknowledgments
to be sent in return.

Acquire: Acquire operations greater than .cta scope (i.e., .gpu and .sys)
invalidate the entire local L1 cache, following software coherence practice. However,
they do not propagate past the L1 cache, as L2 coherence in GPMs is nowmaintained
using NHCC.

Release: Release operations trigger a writeback of all dirty data to the respective
home nodes, if writeback caches are being used. Releases also ensure completion of
anywrite-through operations and invalidationmessages that are still in flight. Release

85

operations greater than .cta scope are propagated through the local L2 to all
remote L2s to ensure that all invalidation messages have arrived at their destinations.
Once this step is complete, each remote L2 sends back an acknowledgment for the
release operation itself. The local L2 then collects these acknowledgments and
returns a single response to the original requester.

Cache Eviction: Two design options are possible upon cache line eviction.
First, a clean cache line being evicted from an L2 cache in a non-home GPM could
send a downgrade message to the home node. This allows the home node to delete
the remote node as a sharer and will potentially save an invalidation message from
being sent later. However, this is not required for correctness. The second option is
to have valid clean cache lines get silently evicted. This eliminates the overhead
of the downgrade message, but it triggers an unneeded invalidation message upon
eventual eviction of the coherence directory entry. Optionally, dirty cache lines
being evicted and written back can use a new message type indicating that the data
must be updated but that the issuing GPM need not be tracked as a sharer going
forward. Again, this optimization is not strictly required for correctness, but may be
useful in implementations using writeback caches.

5.6 Hierarchical Multi-GPU Cache Coherence
Like most prior work, NHCC is designed for single-GPU scenarios and does not
take the hierarchy between intra- and inter-GPU connections into account. This
becomes a problem as we try to extend protocols like NHCC to multiple GPUs, as
inter-GPU bandwidth limitations become a bottleneck.

To better exploit intra-GPU data locality, we propose a hierarchical multi-GPU
(HMG) cache coherence protocol that extends NHCC to be able to take advantage
of the type of locality that Figure 5.3 highlights. The HMG protocol fundamentally
enables multiple cache requests from individual GPMs to be coalesced and/or cached
within a single GPU before traversing the lower-bandwidth inter-GPU links, thereby
saving bandwidth and energy.

86

Data Cache Data Cache

Coherence

Directory

Data CacheData Cache

L2 in GPM0 L2 in GPM0

L2 in GPM1 L2 in GPM1

Cached A Cached A

Cached B

V:A:[GPU1]

V:B:[GPM0]

Cached B

GPU0 GPU1

Inter-GPM Network Inter-GPM Network

Inter-GPU

Cached Data GPU Home Sys Home

Sys Home of A GPU Home of A

Sys Home of BGPU Home of B

(a) Before: GPU0:GPM0 is about to load address B

Data Cache Data Cache

Coherence

Directory

Data CacheData Cache

L2 in GPM0 L2 in GPM0

L2 in GPM1 L2 in GPM1

Cached A Cached A

Cached B

Cached BV:A:[GPU1]

V:B:[GPU0, GPM0]
Cached B

V:B:[GPM0]

Cached B

GPU0 GPU1

Inter-GPM Network Inter-GPM Network

Inter-GPU

Cached Data GPU Home Sys Home

Sys Home of A GPU Home of A

Sys Home of BGPU Home of B

(b) After: B is cached in the L2 of the GPU0 home node for B as well as in the L2 of the
original requester

Figure 5.6: Hierarchical coherence in multi-GPU systems. Loads are routed
from the requesting GPM to the GPU home node, and then to the system
home node, and responses are returned and cached accordingly.

87

5.6.1 Architectural Overview

HMG is composed of two layers. The first layer is designed for intra-GPU caching,
while the second layer is targeted at optimizing memory request routing in inter-GPU
settings. For the intra-GPU layer, we define aGPU home node for each given address
within each individual MCM-GPU. An MCM-GPU home node manages inter-GPM
coherence using NHCC described in Chapter 5.5. Using the intra-GPU coherence
layer, data that is cached within a MCM-GPU can be consumed by multiple GPMs
on that GPU without consulting a remote GPU.

We define one of the GPU home nodes for each address to be the system
home node. The choice of system home node can be made using any NUMA page
allocation policy, such as first touch page placement, NVIDIAUnifiedMemory [168],
static distribution, or any other reasonable heuristic. Among multiple GPUs, sharers
are tracked by the directory using a hierarchy-aware variant of the NHCC directory
design. Specifically, each GPU home node will track any sharers among other GPMs
in the same GPU. Each system home node will track any sharers among other GPUs,
but not individual GPMs within these other GPUs. For an M-GPM, N-GPU system,
each directory entry will therefore need to track as many as M N−2 sharers.

The hierarchical caching mechanism of an example two-GPU system is shown
in Figure 5.6. Each GPU is shown with only two GPMs for brevity, but the protocol
itself can extend to an arbitrary number of GPUs, with an arbitrary number of GPMs
per GPU. In Figure 5.6(a), the system home node of address A is the L2 cache
residing in GPU0:GPM0. This particular L2 cache also serves as the GPU home
node for the same address within GPU0. The L2 cache in GPU0:GPM1 is kept
coherent with the L2 cache in GPU0:GPM0 using the intra-GPU protocol layer. The
L2 cache in GPU1:GPM0 serves as the GPU1 home node for address A, and it is
kept coherent with the L2 cache in GPU1:GPM1 using the intra-GPU layer. Both
GPU home nodes are kept coherent using the inter-GPU protocol layer.

Furthermore, suppose that from the state shown in Figure 5.6(a), GPU0:GPM0
wants to load address B, and the system home node for address B is mapped to
GPU1:GPM1. GPU0:GPM1 is the GPU0 home node for B, so the load request
propagates from GPU0:GPM0 to GPU0:GPM1 (the GPU home node), and then
to GPU1:GPM1 (the system home node). When the response is sent back to the

88

requester, GPU0 (but not GPU0:GPM0 or GPU0:GPM1) is recorded as a sharer by
the directory of the system home node GPU1:GPM1, and GPU0:GPM0 is recorded
as a sharer by the directory of the GPU0 home node GPU0:GPM1, as shown in
Figure 5.6(b).

5.6.2 Coherence Protocol Flows in Detail

HMG behaves similarly to Table 5.1 but adds the single extra transition shown
in Table 5.1. No extra coherence states are added. We highlight the important
differences between NHCC and HMG as follows.

Loads: Loads progress through the cache hierarchy from the local L2 cache, to
the GPU home node, to the system home node. Specifically, loads that miss in the
GPM-local L2 cache are routed to the GPU home node, unless the GPM-local L2
cache is already the GPU home node. From there, loads that miss in the GPU home
node are routed to the system home node, unless the GPU home node is also the
system home node. Loads that miss in the system home node are routed to DRAM.

Non-synchronizing loads (i.e., the vast majority) and loads with .cta scope
can hit in all caches. However, loads with .gpu scope must miss in all caches prior
to the GPU home node. Loads with .sys scope must also miss in the GPU home
node; they may only hit in the system home node.

Loads propagating from the GPU home node to the system home node do not
carry information about the GPM that originally requested the data. Because this
information is already stored by the GPU home node, it would be redundant to
store it again in the directory of the system home node. Instead, invalidations are
propagated to sharers hierarchically as described below.

Stores: Stores are routed through a similar hierarchy as they write-through
and/or write-back. Specifically, stores propagating past the GPM-local L2 cache are
routed to the GPU home node (unless the GPM-local L2 is already the GPU home
node), and stores propagating past the GPU home node are routed to the system
home node (unless the GPU home node is already the system home node). Stores
propagating past the system home node are written to DRAM. Similar to loads,
stores or write-back/write-through operations propagating from the GPU home node
to the system home node carry only the GPU identifier, not the identifier of the GPM

89

within that GPU.
Stores must be written through at least to the home node for the scope in question:

the L1 cache for non-synchronizing and .cta-scoped stores, the GPU home node
for .gpu-scoped stores, and the system home node for .sys-scoped stores. This
ensures that synchronization operations will make forward progress.

Atomics and Reductions: Atomics are always performed in the home node for
the scope in question and they continue to be treated as stores for the purposes of
coherence protocol transitions, just as in NHCC. Once performed at the home node,
responses are propagated back to the requester just as load responses are handled
and the result is stored as a dirty line or written through to subsequent levels of the
cache hierarchy, just as a store would be. For example, the result of a .gpu-scoped
atomic read-modify-write operation performed in the GPU will be written through
to the system home node, in systems which configure the GPU home node to be
write-through for stores.

Invalidations: Because sharers are tracked hierarchically, invalidations sent due
to stores and directory evictions must also propagate hierarchically. Invalidations
sent from the system or GPU home node to other GPMs in the same GPU are
processed and dropped without acknowledgment, just as in NHCC. However, in
HMG any invalidations received by a GPU home node from the system home node
must also be propagated to any and all GPM sharers within the same GPU. This is
the special transition shown in Table 5.1 for HMG.

Acquire: As before, .cta-scoped acquire operations invalidate the local L1
cache, but nothing more, as all levels of L2 cache are being kept hardware-coherent.

Release: Release operations trigger writeback of all dirty data, at least to the
home node for the scope being released. They also still ensure completion of any
write-through operations and invalidation messages still in flight to the home node
for the scope in question. A .gpu-scoped release operation, however, need not
flush all write-back operations across the inter-GPU network before returning a
completion acknowledgment to the original requester.

90

Structure Configuration

Number of GPUs 4
Number of SMs 128 per GPU, 512 in total
Number of GPMs 4 per GPU
GPU frequency 1.3GHz
Max number of warps 64 per SM
OS Page Size 2MB
L1 data cache 128KB per SM, 128B lines
L2 data cache 12MB per GPU

128B lines, 16 ways
L2 coherence directory 12K entries per GPU module

each entry covers 4 cache lines
Inter-GPM bandwidth 2TB/s per GPU, bi-directional
Inter-GPU bandwidth 200GB/s per link, bi-directional
Total DRAM bandwidth 1TB/s per GPU
Total DRAM capacity 32GB per GPU

Table 5.2: Simulated GPU and memory hierarchy for HMG.

5.7 Methodology
To evaluate HMG, we use a proprietary industrial simulator to model a multi-GPU
system described in Table 5.2. The simulator is driven by program traces that record
instructions, registers, memory addresses, and CUDA events. All micro-architectural
scheduling, and thus time for execution, is dynamic within the simulator and respects
functional dependencies such as work scheduling, barrier synchronization, memory
access latencies. However, it cannot accurately model spin-lock synchronizations in
memory. While this type of communication is legal on current NVIDIA hardware, it
is not yet widely adopted due to performance overheads and not present in our suite
of workloads. Simulating the system-level effects of fine-grained synchronization,
in reasonable time, without sacrificing fidelity [217, 229] remains an open problem
for GPU researchers.

Figure 5.7 shows our simulator correlation versus a NVIDIA Quadro-GV100
GPU across a range of targeted microbenchmarks, public, and proprietary workloads.
Figure 5.7 also shows the corresponding data for GPGPU-Sim, a widely-used
academic GPU architecture simulator [31, 108, 111, 128, 190], with simulations
capped at running for about one week. Our simulator has a correlation coefficient of
0.99 and average absolute error of 0.13. This compares favorably to GPGPU-Sim (at

91

104
106
108

1010

104 106 108 1010Si
m
.c

yc
le
s

Real HW cycles

Our simulator GPGPU-Sim

100
102
104
106

104 106 108 1010W
al
lC

lo
ck

(s
)

Sim. cycles

Figure 5.7: Simulator correlation vs. a NVIDIAQuadroGV100 and simulation
runtime for our simulator and GPGPU-Sim.

0.99 and 0.045, respectively), as well as other recently reported simulator results[87]
while being significantly faster, which allows us to run forward-looking GPU
configurations more easily. Our simulator inherits the contiguous CTA scheduling
and first-touch page placement polices from prior work [29, 143] to maximize data
locality in memory.

To perform our evaluation, we choose a public subset of workloads (shown in
Table 5.3) [53, 58, 83, 118, 130, 184, 258] that have sufficient parallelism to fill a
4-GPU system. These benchmarks utilize scoped and/or inter-kernel synchronization
patterns. This ensures that performance does not regress on traditional workloads
even as we accelerate workloads with more fine-grained sharing. Specifically,
cuSolver, namd2.10, and mst use .gpu-scoped synchronization explicitly,
others utilize inter-kernel communication by launching frequent dependent kernels,
and a few are traditional bulk-synchronous providing a historical comparative
baseline.

Coherence Protocol Implementations: This work implements and compares 4
coherence possibilities: a non-hierarchical software protocol (conventional software
coherence with scopes and bulk-invalidation of caches), a non-hierarchical hardware
protocol (NHCC), a hierarchical software protocol (conventional software coherence

92

Benchmark Abbrev. Footprint

cuSolver cuSolver 1.60 GB
HPC_CoMD-xyz49 CoMD 313 MB
HPC_HPGMG HPGMG 1.32 GB
HPC_MiniAMR-test2 MiniAMR 1.80 GB
HPC_MiniContact MiniContact 246 MB
HPC_namd2.10 namd2.10 72 MB
HPC_Nekbone-10 Nekbone 178 MB
HPC_snap snap 3.44 GB
Lonestar_bfs-road-fla bfs 26 MB
Lonestar_mst-road-fla mst 83 MB
ML_AlexNet_conv2 AlexNet 812 MB
ML_GoogLeNet_conv2 GoogLeNet 1.15 GB
ML_lstm_layer2 lstm 710 MB
ML_overfeat_layer1 overfeat 618 MB
ML_resnet resnet 3.20 GB
ML_RNN_layer4_DGRAD RNN_DGRAD 29 MB
ML_RNN_layer4_FW RNN_FW 40 MB
ML_RNN_layer4_WGRAD RNN_WGRAD 38 MB
Rodinia_nw-16K-10 nw-16K 2.00 GB
Rodinia_pathfinder pathfinder 1.49 GB

Table 5.3: Benchmarks used for HMG evaluation.

with hierarchical extension to leverage scopes), and our proposed hierarchical
hardware protocol (HMG). We also compare them to idealized caching that does not
enforce coherence; this serves as a loose upper bound for performance that can be
achieved via hardware caching. For non-hierarchical protocols, multi-GPU systems
like Figure 5.1 behaves as a single flat GPU with more GPMs.

NHCC and HMG behave according to Chapter 5.5 and 5.6 respectively. Load-
acquire operations in our software coherence protocols trigger bulk cache invali-
dations in any caches between the issuing SM and the home node for the scope in
question. For example, .gpu-scoped loads will invalidate both the L1 cache of the
issuing SM and the GPM-local L2 cache. In the hierarchical protocol, .sys-scoped
loads invalidate the L1 cache of the issuing SM and all L2 caches of the issuing
GPU. However, in the non-hierarchical protocol, .sys-scoped loads need not to
invalidate L2 caches in other GPMs of the same GPU, as subsequent loads will
not fetch stale data from those caches. Store-release operations stall subsequent
operations until the home node for the scope in question clears all pending writes.

93

o
v
e
rf

e
a
t

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

M
in

iA
M

R

A
le

x
N

e
t

C
o
M

D

H
P
G

M
G

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

n
a
m

d
2

.1
0

re
sn

e
t

3.6 3.6 3.6

m
st

n
w

-1
6

K

ls
tm

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

b
fs

sn
a
p

R
N

N
_W

G
R

A
D

G
e
o
M

e
a
n

Non-Hierarchical SW Coherence Non-Hierarchical HW Coherence Idealized Caching w/o Coherence

Figure 5.8: Performance of various inter-GPM coherence schemes in a single
GPU with 4 GPMs. Performance is normalized to a scheme that does
not perform inter-GPM caching.

In our evaluation, all caches are write-through. We do not implement the optional
sharer downgrade messages. We model one directory optimization: each entry
tracks the state of four cache lines together. This enables 12K×4×128B = 6MB

of data assigned to each GPM to be actively shared by other GPMs and/or GPUs.
Chapter 5.8.2 later shows performance sensitivity to the choices of these parameters.

5.8 Evaluation Results
We first compare the performance of HMG to NHCC, software coherence protocols,
and idealized caching without any coherence overhead. Then we conduct sensitivity
analysis to explore the design space of HMG.

5.8.1 Performance Analysis

Single-GPU System: As Figure 5.8 shows, we observe that for most benchmarks,
both software and hardware coherence generally perform similarly and close to
an idealized non-coherent caching scheme. The relatively small L2 caches and
relatively large inter-GPM bandwidths can minimize the performance penalty of
cache invalidations in single-GPU systems, and hence we do not elaborate on them
further here.

94

o
v
e
rf

e
a
t

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

M
in

iA
M

R

A
le

x
N

e
t

3.1 3.1 3.2 3.2 3.2

C
o
M

D

H
P
G

M
G

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

n
a
m

d
2

.1
0

re
sn

e
t

m
st

n
w

-1
6

K

ls
tm

3.4 3.5 3.7 4.1 4.0

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

3.7 3.6 4.4 4.3 4.4

b
fs

sn
a
p

R
N

N
_W

G
R

A
D

3.3 3.4 7.0 7.2 7.1

G
e
o
M

e
a
n

Non-Hierarchical SW Coherence
Non-Hierarchical HW Coherence

Hierarchical SW Coherence
HMG Coherence

Idealized Caching w/o Coherence

Figure 5.9: Performance of a 4-GPU system, where each GPU is composed of
4 GPMs. Performance is normalized to a 4-GPU system that disallows
caching of remote GPU data. Five configurations are evaluated: software
protocols with non-hierarchical and hierarchical implementations, NHCC,
HMG, and ideal caching without coherence overhead.

Multi-GPU System: While software coherence may be sufficient within individ-
ual GPUs, even for benchmarks with fine-grained thread-to-thread communication,
Figure 5.9 shows that the benefits of HMG are much more pronounced in deeply
hierarchical multi-GPU systems, especially for the applications which have more
fine-grained data sharing (i.e, the right half side). In a 4-GPU system, HMG gener-
ally outperforms both software coherence protocols and NHCC. Both software and
hardware hierarchical protocols significantly benefit from the additional intra-GPU
data locality. Meanwhile, the non-hierarchical protocols suffer from larger inter-GPU
latency and bandwidth penalties.

Figure 5.10 and 5.11 show that cache line invalidations due to store instructions
or coherence directory evictions do not have a significant impact on performance of
HMG. This is because stores only trigger invalidations if there is a sharer for the
same address and typically only a small percentage of the memory footprint of each
workload contains read-write shared data. Even among stores or directory evictions
that do trigger sharer invalidations, there are generally no more than two sharers
in our workloads. These observations highlight the benefit of tracking sharers
dynamically, rather than e.g., classifying data sharing type alone [253].

Graph workloads’ fine-grained, often conflicting access patterns can lead to false

95

o
v
e
rf

e
a
t

0.0

0.5

1.0

1.5

2.0

a
v
g
 c

a
ch

e
lin

e
in

v
s

b
y
 e

a
ch

 s
to

re

M
in

iA
M

R

A
le

x
N

e
t

C
o
M

D

H
P
G

M
G

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

2.1

n
a
m

d
2

.1
0

re
sn

e
t

m
st

n
w

-1
6

K

ls
tm

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

b
fs

sn
a
p

R
N

N
_W

G
R

A
D

A
v
g

Figure 5.10: Average number of cache lines invalidated by each store request
on shared data.

o
v
e
rf

e
a
t

0.0

0.5

1.0

1.5

2.0

a
v
g
 c

a
ch

e
lin

e
 i
n
v
s

b
y

e
a
ch

 d
ir

e
ct

o
ry

 e
v
ic

ti
o
n

M
in

iA
M

R

A
le

x
N

e
t

2.9

C
o
M

D

H
P
G

M
G

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

n
a
m

d
2

.1
0

re
sn

e
t

m
st

n
w

-1
6

K

3.5

ls
tm

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

b
fs

3.4

sn
a
p

R
N

N
_W

G
R

A
D

A
v
g

Figure 5.11: Average number of cache lines invalidated by each coherence
directory eviction.

sharing. Store operations in software coherence protocols will simply write this data
through, but HMG might trigger frequent invalidations (in these experiments, at the
granularity of four cache lines per directory entry), depending on the input sets. In
such cases, the hardware protocol HMG will have higher overhead. This explains
the performance of mst, for example. For most other applications, the benefits of
HMG outweigh the costs.

We also profile the bandwidth overhead of invalidation messages. Figure 5.12
shows that the total bandwidth cost of invalidation messages is generally as low as
just a few gigabytes per second. This is consistent with prior data since there is little
read-write sharing and a low number of sharers when invalidations must be sent
out. The size of each invalidation message is also relatively small compared to a
GPU cache line. Combined with the fact that GPU workloads are generally latency
tolerant, it becomes clear that HMG for hierarchical multi-GPUs can deliver high

96

o
v
e
rf

e
a
t

0

1

2

3

4

b
a
n
d
w

id
th

 c
o
st

 o
f

in
v
 m

e
ss

a
g
e
s

(G
B

/s
) 15.6

M
in

iA
M

R

19.6

A
le

x
N

e
t

C
o
M

D

H
P
G

M
G

8.8

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

n
a
m

d
2

.1
0

re
sn

e
t

m
st

n
w

-1
6

K

ls
tm

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

b
fs

sn
a
p

R
N

N
_W

G
R

A
D

A
v
g

Figure 5.12: Total bandwidth cost of invalidation messages.

performance, at high efficiency, with relatively simple hardware implementation.
Overall, our results confirm prior suggestions that complicated CPU-like coherence
protocols are unnecessary, even in hierarchical multi-GPU contexts. By providing
a lightweight coherence enforcement mechanism specifically tuned to the scoped
memory model, HMG is able to deliver 97% of the ideal speedup that inter-GPU
caching can possibly enable.

5.8.2 Sensitivity Analysis

To understand the relationship between our architectural parameters and the perfor-
mance of HMG, we performed sensitivity studies across a range of design space
parameters.

• Bandwidth-limited inter-GPU links are the main cause of NUMA effects
that often bottleneck multi-GPU performance. Figure 5.13 shows that when
sweeping across inter-GPU bandwidths, HMG is always the best performing
coherence option, even when absolute performance begins to saturate due to
sufficient inter-GPU bandwidth.

• The impact of L2 cache size on performance is shown in Figure 5.14. Because
of the overhead of cache invalidation, the benefits of increased L2 capacity
are restricted by software coherence protocols. Conversely, the performance
of HMG increases as capacity grows, indicating the advantage of HMG will
only become more favorable in systems with larger caches.

97

100GB/s
0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

200GB/s 300GB/s 400GB/s

Non-Hierarchical HW Coherence
Hierarchical SW Coherence

HMG Coherence
Idealized Caching w/o Coherence

Figure 5.13: Performance sensitivity to inter-GPU bandwidth (baseline is no
caching with configurations of Table 5.2).

6MB/GPU
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

12MB/GPU 24MB/GPU

Non-Hierarchical HW Coherence
Hierarchical SW Coherence

HMG Coherence
Idealized Caching w/o Coherence

Figure 5.14: Performance sensitivity to L2 cache size (baseline is no caching
with configurations of Table 5.2).

• Coherence directory sizing presents a trade-off between power/area and
coverage/performance. As Figure 5.15 shows, the performance of our proposed
HMG is somewhat sensitive to directory size. The benefit of hardware-
managed coherence over software coherence shrinks if the directory is not
able to track enough sharers and is forced to perform additional cache
invalidations across GPUs. However, our modestly-sized directories are
large enough to successfully capture the locality needed to deliver near-ideal
caching performance.

• Coarse-grained directory entry tracking granularity (e.g., where each entry
tracks four cache lines at a time) allows directories to be made smaller,
but it also introduces a risk of false sharing. In order to quantify this
impact, we varied the granularity tracked by each directory entry while
simultaneously adjusting the total number of entries in order to keep the total
coverage constant. The results (Figure 5.16) showed minimal sensitivity,

98

3K entries/GPM
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

6K entries/GPM 12K entries/GPM

Non-Hierarchical HW Coherence
Hierarchical SW Coherence

HMG Coherence
Idealized Caching w/o Coherence

Figure 5.15: Performance sensitivity to the coherence directory size (baseline
is no caching with configurations of Table 5.2).

1 cacheline/entry
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

2 cachelines/entry 4 cachelines/entry

Non-Hierarchical HW Coherence
Hierarchical SW Coherence

HMG Coherence
Idealized Caching w/o Coherence

Figure 5.16: Performance sensitivity to the coherence directory tracking gran-
ularity (baseline is no caching with configurations of Table 5.2).

and we therefore conclude that coarse-grained directory tracking is a useful
optimization for HMG.

5.8.3 Hardware Costs

In our HMG implementation, each directory entry needs to track as many as six
sharers: three GPMs in the same GPU and three other GPUs. Therefore, a 6 bit
vector is required for the sharer list. Because our protocol uses just two states, Valid
and Invalid, only one bit is needed to track directory entry state. We assume 48 bits
for tag addresses, so each entry in the coherence directory requires 55 bits of storage.
Every GPM has 12K directory entries, so the total storage cost of the coherence
directories is 84KB, which is only 2.7% of each GPM’s L2 cache data capacity, a
small price to pay for large performance improvements in future multi-GPUs.

99

5.8.4 Discussion

On-package integration [22, 29, 187] along with off-package integration technolo-
gies [1, 160, 162] enable more and more GPU modules to be integrated in a single
systems. However, NUMA effects are exacerbated as the number of GPMs, GPUs,
and non-uniform topologies increase within the system. In these situations, HMG’s
coherence directory would need to record more sharers and cover a larger footprint
of shared data, but the system performance will likely be more sensitive to the
link speeds and the actual network topology. As shown in Figure 5.15, HMG
can perform very well even after we reduce the coherence directory size by 50%,
showing that there is still room to scale HMG to larger systems. We envision our
proposed coherence protocol being applicable for systems that can be comprised by
a single NVSwitch-based network within a single operating system node. Systems
significantly larger than this (e.g., 1024-GPU systems) may be decomposed into a
hierarchy consisting of hardware-coherent GPU-clusters which are in turn share
data using software mechanisms such as MPI or SHMEM [141, 180].

The rise of MCM-GPU-like architectures might seem to motivate adding
scopes in between .cta and .gpu, to minimize the negative effects of coherence.
However, our single-GPU performance results indicate that our workloads are
minimally sensitive to the inter-GPM coherence mechanism due to high inter-GPM
bandwidth. As a result, the performance benefits of introducing a new .gpm scope
may not outweigh the added programmer burden of using numerous scopes. We
expect further exploration of other software-hardware coherence interactions to
remain an active area of research as GPU systems continue to grow in size.

5.9 Summary
In this chapter, we introduce HMG, a novel cache coherence protocol specifically
tailored to scale well to hierarchical multi-GPU systems. HMG provides efficient
support for fine-grained synchronization now permitted under recently-formalized
scoped GPU memory models. We find that, without much complexity, simple
hierarchical extensions and optimizations to existing coherence protocols can take
advantage of relaxations now permitted in scoped memory models to achieve 97%
performance of an ideal caching scheme that has no coherence overhead. Thanks to

100

its cheap hardware implementation and high performance, HMG demonstrates the
most practical solution available for extending cache coherence to future hierarchical
multi-GPU systems, and thereby for enabling continued performance scaling of
applications onto larger and larger GPU-based systems.

101

Chapter 6

Scalable Multi-GPU Rendering
via Parallel Image Composition

In this chapter, we propose CHOPIN, a Split Frame Rendering (SFR) technique that
eliminates the performance overheads of prior solutions by leveraging parallel image
composition. Unlike prior work, draw commands are distributed across different
GPUs to remove redundant computation, and image composition is performed in
parallel to obviate the need for sequential primitives exchanging. CHOPIN includes
a novel draw command scheduler that predicts the proper GPU for each draw
command to avoid the inter-GPU load imbalance, and a novel image composition
scheduler to reduce network congestion that can easily result from naïve inter-GPU
sub-image exchange. Through an in-depth analysis using cycle-level simulations
on a range of real-world game traces, we demonstrate that CHOPIN outperforms
the prior state-of-the-art SFR implementation by up to 1.56× (1.25× gmean) in an
8-GPU system.

GPUs were originally developed to accelerate graphics processing— the process
of generating 2D-view images from 3D models [134]. Although much recent
computer architecture research has focused on using GPUs for general-purpose
computing, high-performance graphics processing has historically accounted for the
lion’s share of demand for GPUs. This continues to be the case, with graphics remain-
ing the dominant source of revenue for GPU vendors: for example, NVIDIA’s year
2019 revenues from the gaming (GeForce) and professional visualization (Quadro)

102

markets combined are 2.5× and 11.5× higher than that from the datacenter and au-
tomotive markets, respectively [176]. This is driven by many applications, including
gaming, scientific data visualization, computer-aided design, Virtual Reality (VR),
Augmented Reality (AR), and so on. Gaming itself continues to evolve: 4K/UHD
high-resolution gaming requires 4× as many pixels to be rendered as 1080p HD
gaming [4], while VR gaming is 7×more performance demanding than 1080p [169].
These requirements have imposed unprecedented challenges on vendors seeking to
provide a high-quality experience to end consumers.

This need for substantial performance improvements has, however, been in-
creasingly difficult to satisfy with conventional single-chip GPU systems. To
continue scaling GPU performance, GPU vendors have recently built larger sys-
tems [170, 173, 174] that rely on distributed architectures such asMulti-Chip-Module
GPU (MCM-GPU) [29] and multi-GPUs [143, 197, 253]. MCM-GPU and multi-
GPU systems promise to push the frontiers of performance scaling much farther by
connecting multiple GPU chip modules (GPMs) or GPUs with advanced packag-
ing [187] and networking technologies, such as NVLink [160], NVSwitch [162],
and XGMI [1]. In principle, these platforms can offer substantial opportunities for
performance improvement; in practice, however, their performance tradeoffs for
graphics processing are different from that of single-chip GPUs, and fully realizing
the benefits requires the use of distributed rendering algorithms.

Distributed rendering is, of course, not new: GPU vendors have long combined
two to four GPUs using techniques like SLI [166] and Crossfire [20]. They distribute
the rendering workload using either Alternate Frame Rendering (AFR), where
different GPUs process consecutive frames, or Split Frame Rendering (SFR), which
assigns disjoint regions of a single frame to different GPUs. By processing alternate
frames independently, AFR improves the overall rendering throughput, but does
nothing to improve single-frame latencies. While the average frame rate improves,
the instantaneous frame rate can be significantly lower than the average frame
rate. This problem, called micro-stuttering, is inherent to AFR, and can result in a
dramatically degraded gameplay experience [3, 5, 8]. In contrast, SFR can improve
both the frame rate and the single-frame latencies [70, 103, 152]. Therefore, SFR is
more widely used in practice, and we focus on SFR in this chapter. The tradeoff,
however, is that SFR requires GPUs to exchange data for both inter- and intra-frame

103

data dependencies, which creates significant bandwidth and latency challenges for
the inter-GPU interconnect.

While the recent introduction of high-performance interconnects like NVLink
andXGMI promises to conquer the inter-GPU communication bandwidth constraints,
key challenges still remain. SFR assigns split screen regions to separate GPUs, but
the mapping of primitive (typically triangle) coordinates to screen regions is not
known ahead of time, and must be computed before distributing work among GPUs.
CPU pre-processing techniques [70, 102, 103] are limited by the low computing
and data throughput. GPU methods rely on redundant computation — every GPU
projects all 3D primitives to the 2D screen space and retain only the primitives
within its assigned screen region — but this incurs significant overheads on modern
high-triangle-count workloads in multi-GPU systems, and does not take advantage
of the new high-speed interconnects. Recent work GPUpd [114] has attempted
to reduce the redundant computation through additional interconnect traffic, but
is bottlenecked by sequential inter-GPU primitive redistribution needed to protect
the input order of primitives (see Chapter 6.2 for a detailed analysis of prior SFR
solutions). Therefore, there is an urgent need for parallel rendering schemes that can
leverage today’s high-speed interconnects and reliably scale to multi-GPU systems.

6.1 Parallel Image Composition
Image composition is the reduction of several images into one, and is performed
on pixel granularity. The reduction process is a sequence of operations, each
of which has two inputs: the current pixel value pold and the incoming value
pnew. The two are combined using an application-dependent function f to produce
the updated pixel p = f pold, pnew. The exact definition of f depends on the
task: for example, f can select the pixel which is closer to the camera, or blend
the colour values of the two pixels. A common blending operation is the over
operator [186] p = pnew 1−αnew ∗ pold, where p represents the pixel colour and
opacity components, and α is the pixel opacity only. Other blending operators
include addition, multiplication, and so on.

For opaque pixels, f is commonly defined to compare the depth value and keep
the pixel which is closer to the camera. As we all know, picking the smallest depth

104

value from multiple pixels can be done out-of-order. However, composition of
transparent or semi-transparent objects needs to blend multiple pixels, which in
general must follow the depth order either front-to-back or back-to-font; for example,
the visual effect of putting a drop of light-pink water above a piece of glass is different
from the reversed order. For a series of pixels, therefore, the final value of f is
derived from an ordered reduction of individual operations, f = f1 ◦ f2 ◦ · · ·◦ fn. The
ordering of f1 through fn matters, and in general the sequence cannot be permuted
without altering the semantics of f . Fortunately, although blending operators are not
commutative, they are associative: i.e., f1 ◦ f2 ◦ f3 ◦ f4 = f1 ◦ f2 ◦ f3 ◦ f4 [33]. As we
detail in Chapter 6.3, CHOPIN leverages this associativity to compose transparent
sub-images asynchronously.

Apart from the reduction function, how pixels are sent to the GPU where
the reduction occurs also matters for performance. The simplest communication
method is direct-send [99, 157]: once a GPU has finished processing its workload,
it begins to distribute the image regions that belong to other GPUs, regardless of
the readiness of the destination GPUs. With a large number of GPUs, this can
easily congest the network with many simultaneous messages. To address this issue,
binary-swap [136, 254] and Radix-k [183] first divide composition processes into
multiple groups, and then compose sub-images with direct-send inside each group;
to compose all sub-images, several rounds of this procedure are required. Alternately,
Sepia [145] and Lightning-2 [227] designed special hardware to accelerate image
composition, but this incurs expensive hardware cost.

In contrast, the approach we take in this chapter maintains the simplicity of
direct-send, and mitigates network congestion issues via a novel image composition
scheduler: within CHOPIN, any two GPUs start composition-related transfers only
when they are ready and available.

6.2 Limits of Existing Solutions
SFR splits the workload of a single frame into multiple partitions and distributes
them among different GPUs. However, individual GPUs must synchronize and
exchange information somewhere along the rendering pipeline in order to produce
the correct final image.

105

cod2
0%

20%

40%

60%

80%

%
 o

f
G

e
o
P
ro

ce
ss

 C
y
cl

e
s

cry grid mirror nfs stal ut3 wolf Avg

1 GPU 2 GPUs 4 GPUs 8 GPUs

Figure 6.1: Percentage of geometry processing cycles in the graphics pipeline
of conventional SFR implementation.

Based on where this synchronization happens, SFR implementations can be
classified into three categories: sort-first, sort-middle, and sort-last [147]. Sort-
first rendering identifies the destination GPUs of each primitive by conducting
preliminary transformations at the very beginning of the graphics pipeline to
compute the screen coordinates of all primitives, and distributes each primitive
to the GPUs that correspond to the primitive’s screen coordinates; after primitive
distribution, each GPU can run the normal graphics pipeline independently. In
contrast, both sort-middle and sort-last distribute primitives without knowing where
they will fall in the screen space, and exchange partial information later: sort-middle
rendering exchanges geometry processing results before the rasterization stage, while
sort-last rendering exchanges fragments at the end of the pipeline for final image
composition.

Among these three implementations, sort-middle is rarely adopted because
the size of geometry processing outcome is very large (hundreds of kilobytes per
primitive) [120, 208]. Both CPUs and GPUs have been used for the preliminary
transformation in sort-first rendering [70, 102, 103, 148, 166]. Thanks to higher
computing and data throughputs, traditional GPU-assisted implementations tend to
perform better than CPUs, but they duplicate all primitives in every GPU to amortize
the low bandwidth and long latency of traditional inter-GPU links [148, 166]. In
these schemes, each GPU maps all primitives to screen coordinates, and eventually
drops the primitives that fall outside of its assigned screen region. Unfortunately, this
duplicated pre-processing stage is not scalable: as shown in Figure 6.1, redundant

106

GPU0

GPU1

GPU2

GPU3

GPU0

GPU1

GPU2

GPU3

D

D

D

D

D

D

D

D

G

G

G

G

G

G

G

G

R&F

R&F

R&F

R&F

R&F

R&F

R&F

R&F

G

G

G

G

G

G

G

G

R&F

R&F

R&F

R&F

R&F

R&F

R&F

R&F

Comp.

Comp.

Comp.

Comp.

Comp.

Comp.

Comp.

Comp.

Reduced

Cycles

Reduced

Cycles

GPU0

GPU1

GPU2

GPU3

GPU0

GPU1

GPU2

GPU3

GPUpd

CHOPIN

P

P

P

P

P

P

P

P

Figure 6.2: Graphics pipelines of GPUpd and CHOPIN. (P: Primitive Projec-
tion, D: Primitive Distribution, G: Geometry Processing, R: Rasterization,
F: Fragment Processing, Comp: Parallel Image Composition.)

2 4 8

cod2

0%

10%

20%

30%

40%

50%

60%

70%

G
P
U

p
d
 O

v
e
rh

e
a
d
s

2 4 8

cry

2 4 8

grid

2 4 8

mirror

2 4 8

nfs

2 4 8

stal

2 4 8

ut3

2 4 8

wolf

2 4 8

Avg

Primitive Distribution Primitive Projection

Figure 6.3: Percentage of execution cycles of the extra pipeline stages in
GPUpd.

geometry processing will dominate the execution cycles of graphics pipeline and
severely impact performance as the number of GPUs grows.

To address the problemof redundant computing and take advantage of recent high-
performance interconnects, Kim et al. proposed GPUpd [114] pipeline, illustrated in
Figure 6.2. GPUpd is a sort-first technique, which evenly distributes all primitives
of each draw command across GPUs. All GPUs project the received primitives to
screen space. The GPUs then exchange primitive IDs based on projection results
through high-performance inter-GPU connections, so that each GPU owns only
primitive IDs that fall into its assigned region of screen space. Finally, each GPU
executes the full graphics pipeline on its received primitive IDs.

107

cod2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

cry grid mirror nfs stal ut3 wolf GMean

Duplication GPUpd IdealGPUpd IdealCHOPIN

Figure 6.4: Potential performance improvement afforded by leveraging parallel
image composition.

However, although GPUpd can reduce the overhead of redundant primitive
projections, it requires GPUs to distribute primitive IDs sequentially to protect
the input primitive order; otherwise, a GPU must have large memory to buffer
exchanged primitive IDs and complex sorting structure to reorder them. During
inter-GPU exchanging, GPU0 first distributes its primitive IDs to other GPUs, then
GPU1 distributes its primitive IDs, and this procedure continues until all GPUs
have completed primitive distribution. As shown in Figure 6.3, with more GPUs in
the system (2–8 GPUs), the sequential inter-GPU primitive distribution becomes a
critical performance bottleneck.

6.3 CHOPIN: Leveraging Parallel Image Composition
To eliminate the performance overhead of redundant computing and sequential
inter-GPU synchronizations, in this chapter, we propose CHOPINwhich is a sort-last
rendering scheme, with a pipeline shown in Figure 6.2.

It first divides consecutive draw commands of each frame into multiple groups
based on the draw command property. As for each group, draw commands are
distributed across different GPUs. Since each draw command is only executed in a
single GPU, CHOPIN is free of the redundant primitive projections that arise in
traditional SFR implementations.

At group boundaries, sub-images generated by all GPUs are composed in
parallel. For the group of opaque objects, sub-images can be composed out-of-order,
because the pixels which are closer to the camera will always win. For the group of

108

transparent objects, we take advantage of the associativity of image composition
described in Chapter 6.1: adjacent sub-images are composed asynchronously as
soon as they are available.

However, naïve distribution of draw commands, such as using round-robin, can
result in severe load imbalance among the GPUs. CHOPIN therefore relies on
a novel draw command scheduler (Chapter 6.4.4) which can dispatch each draw
command to a proper GPU based on the dynamic execution state. To mitigate
network congestion and avoid unnecessary stalls, we also propose a scheduler for
sub-image composition (Chapter 6.4.5), which ensures that any two GPUs can start
composition only when their sub-images are ready and neither of them is composing
with other GPUs.

Figure 6.4 illustrates the potential of CHOPIN in an ideal system where all
intermediate results are buffered on-chip and the inter-GPU links have zero latency
and unlimited bandwidth: parallel image composition offers up to 1.68× speedups
(1.31× gmean) over the best prior SFR solution. We refer detailed evaluation
methodology to Chapter 6.5.

6.4 The CHOPIN Architecture
The high-level system architecture of CHOPIN is shown in Figure 6.5, and consists
of extensions in both the software and hardware layers.

In the software layer Ê, we divide draw commands into multiple groups. At the
beginning and the end of each group, we insert two new Application Programming
Interface (API) functions CompGroupStart() and CompGroupEnd() to start and
finish the image composition. We also extend the driver by implementing a separate
command list for each GPU.

In the hardware layer, we connect multiple GPUs with high-speed inter-GPU
links Ë, similar to NVIDIA DGX system [170, 173], and present them to the OS as
a single larger GPU. Draw commands issued by the driver are distributed among
the different GPUs by a hardware scheduler Ì. After all draw commands of a
single composition group have finished, CompGroupEnd() is called to compose the
resulting sub-images. An image composition scheduler Í orchestrates which pairs
of GPUs can communicate with one another at any given time.

109

H
ar

d
w

ar
e

Draw Command Scheduler

❷

Draw Command Scheduler

❷

Image Composition Scheduler❹ Image Composition Scheduler❹

S
o
ft

w
a
re

CompGroupEnd()CompGroupStart() CompGroupEnd()CompGroupStart()

DDD DDD DDDDDD DDDDDDD DDDDDDDD DDDDDDD DDD DDDDDDD DDDD

❸

GPU GPUGPU GPUGPU GPUGPU GPU

GPU Driver

❶ Graphics API❶ Graphics API

Figure 6.5: High-level system overview of CHOPIN (each “D” stands for a
separate draw command).

6.4.1 Software Extensions

Wefirst explain the semantics of extended graphicsAPI functions. CompGroupStart()
is called before each composition group starts. This function does the necessary
preparations for image composition. It passes the number of primitives and the
transparency information to the GPU driver; the GPU driver will then send these
data to the GPU hardware. If there are transparent objects in composition group, the
GPU driver allocates extra memory for sub-images in all GPUs, because transparent
sub-images cannot be messed with the background before composition. When
function CompGroupEnd() is called, the GPU driver sends a COMPOSE command
to each GPU for image composition. The composition workflow is described in
detail in Chapter 6.4.3.

The necessity of grouping draw commands is derived from the various properties
of each draw command. CHOPIN assumes Immediate Mode Rendering (IMR), so
we only group consecutive draw commands in a greedy fashion; however, more

110

sophisticated mechanisms could potentially reorder draw commands to create larger
composition group at the cost of additional complexity. When processing a sequence
of draw commands, a group boundary is inserted between two adjacent draw
commands on any of the following events:

1. swapping to the next frame,

2. switching to a new render target or depth buffer,

3. enabling or disabling updates to the depth buffer,

4. changing the fragment occlusion test function, or

5. changing the pixel composition operator.

Event 1 is straightforward, because we have to finish the current frame before
we move to the next one. Render Targets (RTs) are a feature that allow 3D objects
to be rendered in an intermediate memory buffer, instead of the framebuffer (FB);
they can be manipulated by pixel shaders in order to apply additional effects to the
final image, such as light bloom, motion blur, etc. A depth buffer (or Z Buffer)
is a memory structure that records the depth value of screen pixels, and is used
to compute the occlusion status of newly incoming fragments. For both, Event 2
is necessary to maintain inter-RT and inter-depth-buffer dependencies, where the
computing of future RTs and depth buffers depends on the content recorded in the
current one.

In graphics applications, some draw commands check the depth buffer for
occlusion verification without updating it. Not inserting a boundary here could
allow some fragments to pass the depth test and update the frame buffer by mistake,
leading to an incorrect final image. We use Event 3 to create a clean depth buffer
before these draw commands begin.

Boundaries at Event 4 are needed because draw commands use depth comparison
operators to retain or discard incoming fragments. Since CHOPIN distributes draw
commands among multiple GPUs, having multiple comparison functions (e.g.,
less-than and greater-than) in a single group can scramble the depth comparison
order and lead to incorrect depth verification. A group boundary at Event 4 will

111

guarantee every time a new comparison function is applied, depth test will start
from a correct value.

As described in Chapter 6.1, pixel blending of consecutive draw commands is
associative as long as a single blending operator (e.g., over) is used. However, the
associativity is not transitive across different operators (e.g., mixed over and additive
operators are not associative), and the composition of opaque and transparent objects
also cannot be interleaved. Hence, whenever any draw command changes to a new
operator (i.e., Event 5), we create a group boundary.

6.4.2 Hardware Extensions

Besides inter-GPU communications, the main operations of image composition
are (a) reading local sub-image before sending it out and (b) composing pixels in
destination GPUs. As both of these functions are carried out by the ROP, they do
not require new functional components in CHOPIN.

However, since SFR (Split Frame Rendering) splits 2D screen space into
multiple regions and assigns each region to a specific GPU, pixels must eventually
be exchanged among GPUs after sub-images are generated, we need a hardware
component that computes destination GPUs of individual pixels. We therefore
slightly extend the ROPs with a simple structure that distributes pixels to different
GPUs according to their screen positions.

We also require a draw command scheduler and an image composition scheduler
to address the problems of load imbalance and network congestion, which are two
main performance bottlenecks of a naïve implementation of CHOPIN. We describe
them in Chapter 6.4.4 and 6.4.5, respectively.

6.4.3 Composition Workflow

Figure 6.6 shows the workflow of each composition group. When a composition
group begins, we first check how many primitives (e.g., triangles) are included in
this group Ê. If the number of primitives is smaller than a certain threshold, we
revert to traditional SFR and duplicate all primitives in each GPU Ë. This is a
tradeoff between redundant geometry processing and image composition overhead.
For example, some draw commands are executed to set up the background before

112

 Check # of Primitives

CompGroupStart

CompGroupEnd

>= Threshold?
 Duplicate Primitives

 Across GPUs

Transparent?

Evenly Divide Draws

Send Consecutive

Draws to Same GPU
Out-of-Order

Composition
Compose Adjacent

Images in Parallel

 Dynamically Schedule

 Draws Across GPUs

Create Render Target

for Sub-Image

Exit

Yes

Yes

No

No

❼

❶

❷

❸

❻

❹

❺

Figure 6.6: The workflow of each composition group.

real objects are rendered; because these draw commands simply cut a rectangle
screen into two triangles, the geometry processing overhead is much smaller than
other graphics pipeline stages, and the overhead of redundant geometry processing
is also much smaller than the cost of image composition. Although this threshold is
an additional parameter that must be set, our sensitivity analysis (see Figure 6.19)
results show that the threshold value does not substantially impact the performance,
so this is not a significant concern.

For each composition group that warrants parallel image composition, we first
check if the group contains transparent objects. If so, the GPU driver needs to
create extra render targets for sub-images in each GPU Ì. This is necessary because

113

cod2
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

cry grid mirror nfs stal ut3 wolf GMean

Duplication GPUpd CHOPIN_Round_Robin

Figure 6.7: Performance overhead of round-robin draw command scheduling
(normalized to the system which duplicates all primitive across GPUs).

transparent objects cannot be merged with the background until all sub-images have
been composed—otherwise, the background pixels will be composedmultiple times,
creating an incorrect result. To protect the input order of transparent primitives and
achieve reasonable load balance at the same time, we evenly divide draw commands
and simply distribute the same amount of continuous primitives across GPUs Í.
This simple workload distribution is acceptable because, in current applications,
only a small fraction of draw commands are transparent. After a GPU has finished
its workload, we can begin to compose adjacent sub-images asynchronously by
leveraging associativity Î.

If the group has no transparent objects, CHOPIN dynamically distributes draw
commands with our proposed scheduler Ï; in this case, it is not necessary to create
extra render targets because generated sub-images will overwrite the background
anyway. Finally, opaque sub-images are composed out-of-order Ð by simply
comparing their distances to the camera (depth value); sub-image pixels which are
closer to the camera will be retained for final image composition.

6.4.4 Draw Command Scheduler

Although the parallel image composition technique in CHOPIN can avoid sequential
inter-GPU synchronizations, the correct final image can only be generated after all
sub-images have been composed; therefore, the slowest GPU will determine the
overall system performance. As Figure 6.7 shows, simple draw command scheduling,
such as round-robin, can lead to severe load imbalance and substantially impact
performance.

114

0 200 400 600 800 1000

0
100
200
300
400
500
600
700
800

T
ri

a
n
g
le

 R
a
te

 (
C

y
cl

e
s/

T
ri

)
o
f

G
e
o
m

e
tr

y
 P

ro
ce

ss
in

g

composition group composition group

0 200 400 600 800 1000

Draw Command ID

0
100
200
300
400
500
600
700
800

T
ri

a
n
g
le

 R
a
te

 (
C

y
cl

e
s/

T
ri

)
o
f

G
ra

p
h
ic

s
P
ip

e
lin

e

composition group composition group

Figure 6.8: Triangle rate of geometry processing stage (top) andwhole graphics
pipeline (bottom). The data is from cod2, other applications have the
same trend.

To achieve optimal load balance, we would ideally like to know the exact
execution time of each draw command; however, this is unrealistic before the draw
command is actually executed. Therefore, we need to approximately predict the draw
command running time. A complete heuristic for rendering time estimation has been
proposed in [240]: t = c1×#tv c2 ∗#pix, where t is the estimated rendering time,
#tv is the number of transformed vertices, #pix is the number of rendered pixels,
and c1 and c2 are the vertex rate and pixel rate. Although this heuristic considered
both geometry and fragment processing stages, the value of c1 and c2 can change
dynamically across draw commands, and we cannot use this approach directly.
OO-VR [246] samples these parameters on the first several draw commands and
uses them for the remainder of the rendering computation; however, we have found
that these parameters vary substantially, and such samples form a poor estimate for
the dynamic execution state of the whole system. Other prior work [17] instead uses
the triangle count of each draw command (which can be acquired from applications)
as a heuristic to estimate rendering time. However, dynamically keeping tracking
of all triangles throughout the graphics pipeline is complicated, especially after a
triangle is rasterized into multiple fragments.

115

GPU0 GPU1 GPU2 GPU3GPU0 GPU1 GPU2 GPU3

GPU Driver

of Scheduled Triangles # of Processed Triangles# of Scheduled Triangles # of Processed Triangles

200 150GPU0 200 150GPU0

180 150GPU1 180 150GPU1

210 → 310 190 → 240GPU2 210 → 310 190 → 240GPU2

200 160GPU3 200 160GPU3

Find Min

Remaining

Triangles

Draw Commands

Software

Hardware
D

ra
w

 C
o

m
m

an
d

S
ch

ed
u

le
r

❺

❶

❷

❸

❹

100 Triangles

Figure 6.9: Draw command scheduler microarchitecture.

Fortunately, as Figure 6.8 shows, the triangle rate (i.e., cycles/triangle) of
the geometry processing stage is similar to that of the whole graphics pipeline —
this is similar to how the instruction processing rate in a CPU frontend limits the
performance of the CPU backend. We therefore propose to use the number of
remaining triangles in the geometry processing stage as an estimate of each GPU’s
remaining workload. Every time a draw command is issued by the GPU driver, we
simply distribute it to the GPU which has the fewest remaining triangles in geometry
processing stage.

The microarchitecture of our draw command scheduler is shown in Figure 6.9.
The main structure is a table, in which each GPU has an entry to record the number
of scheduled and processed triangles in that GPU; the remaining triangle count is
the difference. The scheduled triangle count increments when a draw command
is scheduled to a GPU, while the processed count increments as triangles finish
geometry processing.

Figure 6.9 also shows a running example of how the scheduler operates: first, the
GPU driver issues a draw command with 100 triangles Ê. Next, the draw command
scheduler finds that GPU2 currently has the fewest remaining triangles Ë. The
triangle count of this draw command is therefore added to the number of triangles
scheduled to GPU2Ì, while the scheduler distributes this draw command to GPU2Í.

116

C
o

m
p

o
si

ti
o

n

S
ch

ed
u

le
r

Inter-GPU connections (NVLink, NVSwitch, or XGMI)

GPU0 GPU1 GPU2 GPU3GPU0 GPU1 GPU2 GPU3

CGID Ready Receiving Sending
Received

GPUs

Sent

GPUs
CGID Ready Receiving Sending

Received

GPUs

Sent

GPUs

5GPU0 T F T 001000105GPU0 T F T 00100010

5GPU1 T T F 000000005GPU1 T T F 00000000

5GPU2 T F F 100010005GPU2 T F F 10001000

4GPU3 F F F 000000004GPU3 F F F 00000000

Figure 6.10: Image composition scheduler microarchitecture.

Field Meaning

CGID Composition Group ID
Ready Ready to compose with others?
Receiving Receiving pixels from another GPU?
Sending Sending pixels to another GPU?
SentGPUs GPUs the sub-image has been sent to
ReceivedGPUs GPUs we have composed with

Table 6.1: Fields tracked by image composition scheduler.

Once the triangles pass through the geometry processing stage in graphics pipeline,
the number of processed triangles for GPU2 is increased accordingly Î.

6.4.5 Image Composition Scheduler

Once each GPU has finished its workload, it can begin to communicate with other
GPUs for sub-images composition. However, blind inter-GPU communication
can result in the congestion and under-utilization of interconnect resources (see
Chapter 6.1). The most straightforward scheme, direct-send, sends the screen
regions to any other GPUs without knowing if the destination GPU can accept it;
if the target GPU is still computing, the waiting inter-GPU messages will blocked
the interconnect. For example, assuming a situation where all GPUs except GPU0

117

have finished their draw commands, so GPUs begin to send their sub-images to
GPU0. Because GPU0 is still running, inter-GPU messages will be blocked in
the network. Even though GPUs could have communicated with another GPU
rather than GPU0, now they have to wait until GPU0 is able to drain the network.
Therefore, an intelligent scheduling mechanism for image composition is necessary.

Our proposed composition scheduler, shown in Figure 6.10, aims to avoid stalls
due to the GPUs that are still running their scheduled draw commands or busy
composing with other GPUs. It records the composition status (Table 6.1) of each
GPU in a table: the composition group ID (CGID) is used to distinguish different
groups, the Ready flag is set while a GPU generated its sub-image and became ready
to compose with others, and the Receiving and Sending flags are used to indicate
that a GPU is busy exchanging pixels with another GPU. Finally, SentGPUs and
ReceivedGPUs record the GPUs with which a GPU has already communicated in a
bit vector, vector size is same as the number of GPUs in the system.

Figure 6.11 shows the image composition scheduler workflow. Once a GPU
has finished all draw commands and generated a sub-image, we set its Ready flag
and increment the CGID by one to start a new composition phase Ê. We then
check the status of other GPUs to see if any available GPUs can compose with each
other. For groups of transparent objects Ë, only adjacent GPUs are checked because
transparent sub-images cannot be composed entirely out-of-order (Chapter 6.1); for
opaque groups, all GPUs are checkedÌ. Composition starts only if the remote GPU
(1) is ready to compose and running in the same composition group (i.e., CGIDs
are same), (2) has not yet been composed with (i.e., not set in ReceivedGPUs), and
(3) is not sending pixels to another GPU.

As an example, consider the status of Figure 6.10. We can see that GPU0 and
GPU2 have composed with each other, GPU3 is still running, and GPU1 just finished
its workload and set its Ready flag. At this moment, GPU1 can compose with GPU0,
so we set the Receiving flag of GPU1 and the Sending flag of GPU0 to indicate
that these two GPUs are busy Í. When image composition starts, GPU0 will read
its sub-image and send out the region corresponding to GPU1. After these two
GPUs have finished composition, we will reset the Receiving flag of GPU1 and the
Sending flag of GPU0. Meanwhile, we will also add GPU0 into the ReceivedGPUs
field of GPU1 and add GPU1 into the SentGPUs field of GPU0 Î. This procedure

118

Start

End

 Set Ready, increment CGID

Transparent ?

 Status of Adjacent GPUs Status of All Other GPUs

Can Compose ?

 Set Receiving, Sending

 Reset Receiving, Sending,

 Set SentGPUs, ReceivedGPUs

All Composed ?

 Reset Table Entry Status

❶

❷ ❸

❹

❺

❻

Yes

No

Yes

No

Yes

No

Figure 6.11: Image composition scheduler workflow.

is repeated until all sub-images are composed. Finally, we reset the table entry after
a GPU has sent its sub-image to all other GPUs and the sub-images of all other
GPUs has also been received Ï. The composition is finished once each GPU has
composed with all other GPUs and, for transparent sub-images, the background.

6.5 Methodology
We evaluate CHOPIN by extending ATTILA [63, 151], a cycle-level GPU simulator
which implements a wide spectrum of graphics features present in modern GPUs.
Unfortunately, the latest ATTILA is designed to model an AMD TeraScale2
architecture [142], and is hard to configure as the latest NVIDIA Volta [172] or

119

Structure Configuration

GPU frequency 1GHz
Number of GPUs 8
Number of SMs 64 (8 per GPU)
Number of ROPs 64 (8 per GPU)
SM configurations 32 shader cores, 4 texture units
L2 Cache 6MB in total
DRAM 2TB/s, 8 channels

8 banks per channel
Composition group 4096# primitives threshold
Inter-GPU bandwidth 64GB/s (uni-directional)
Inter-GPU latency 200 cycles

Table 6.2: Simulated GPU and memory hierarchy for CHOPIN.

Benchmark Abbr. Resolution # Draws # Triangles

Call of Duty 2 cod2 640×480 1005 219,950
Crysis cry 800×600 1427 800,948
GRID grid 1280×1024 2623 466,806

Mirror’s Edge mirror 1280×1024 1257 381,422
Need for Speed: nfs 1280×1024 1858 534,121Undercover
S.T.A.L.K.E.R.: stal 1280×1024 1086 546,733Call of Pripyat

Unreal ut3 1280×1024 1944 630,302Tournament 3
Wolfenstein wolf 640×480 1697 243,052

Table 6.3: Benchmarks used for CHOPIN evaluation.

Turning [164] systems; therefore, to fairly simulate the performance of different SFR
implementations, we scale down system parameters, such as the number of SMs and
ROPs, accordingly (Table 6.2). Similar simulation strategies have been widely used
in related prior work [244, 245, 246, 247]. We extend the GPU driver for issuing
draw commands and hardware register values to different GPUs. Similar to existing
NVIDIA DGX system [170, 173], we model the inter-GPU links with point-to-point
connections between GPU pairs, with a default bandwidth and latency of 64GB/s
and 200 cycles.

As benchmarks, we use eight single-frame traces as shown in Table 6.3, which
we manually annotate to insert the new API functions CompGroupStart() and

120

CompGroupEnd() at composition group boundaries. All benchmarks come from
the real-world games; the number of draw commands and the number of primitives
(triangles) and the target resolutions vary across the set, and are shown in Table 6.3.

Our SFR implementation splits each frame by interleaving 64×64 pixel tiles to
different GPUs. Unlike AFR, SFR needs to handle the read-after-write dependencies
on render targets and depth buffers. To ensure memory consistency, every time the
application switch to a new render target or depth buffer, our simulation invokes an
inter-GPU synchronization which requires each GPU to broadcast the latest content
of their current render targets and depth buffers to other GPUs.

Apart from our CHOPIN system, we also implement primitive duplication,
which we use as the baseline. We also implement the best prior work GPUpd [114],
modelling both optimizations: batching and runahead execution.1 To explore the
upper bound on the performance of each technique, we also idealize GPUpd and
CHOPIN in the same way: unlimited on-chip memory for buffering intermediate
results, zero inter-GPU latency, and infinite inter-GPU bandwidth.

6.6 Evaluation Results
In this section, we first compare the performance of CHOPIN, primitive duplication,
and GPUpd. Then we conduct sensitivity analysis to explore the design space, and
finally evaluate the hardware costs.

6.6.1 Performance Analysis

The overall performance of multiple SFR implementations is shown in Figure 6.12.
The performance of GPUpd is comparable to conventional primitive duplication.
Idealization of GPUpd (i.e., our best implementation of GPUpd) can slightly improve
the performance, but it’s still substantially worse than CHOPIN. With the image
composition scheduler enabled, CHOPIN works 25% (up to 56%) better than
primitive duplication, and only 4.8% slower than IdealCHOPIN.

Figure 6.13 shows that the performance improvement of CHOPIN comes mainly
from the reduced synchronization overheads: for GPUpd, this is the extra primitive

1We contacted the authors to request the GPUpd sources, but were denied because of IP issues; we
therefore created a best-effort realistic implementation of GPUpd as well as an idealized variant.

121

cod2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

cry grid mirror nfs stal ut3 wolf GMean

GPUpd IdealGPUpd CHOPIN CHOPIN+CompSched IdealCHOPIN

Figure 6.12: Performance of an 8-GPU system, baseline is primitive dupli-
cation with configurations of Table 6.2. (CompSched: composition
scheduler)

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

cod2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
x
e
cu

ti
o
n
 C

y
cl

e
s

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

cry

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

grid

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

mirror

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

nfs

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

stal

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

ut3

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

wolf
D

u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

GMean

Normal Pipeline Primitive Distribution Primitive Projection Composition

Figure 6.13: Execution cycle breakdown of graphics pipeline stages, nor-
malize all results to the cycles of primitive duplication. (CHOPIN+:
CHOPIN+composition scheduler, CHOPIN++: IdealCHOPIN)

projection and distribution stages, while for CHOPIN this is the image composition
stage (e.g., the composition overhead of grid is large because it has much bigger
inter-GPU traffic load, see Figure 6.14). Conventional primitive duplication suffers
because of redundant geometry processing, which CHOPIN entirely avoids. Even
though GPUpd still performs some redundant computation in the primitive projection
stage, sequential inter-GPU primitive is its critical performance bottleneck.

CHOPIN avoids redundant geometry processing by distributing each draw
command to a specific GPU, and substantially reduces the overhead of inter-
GPU synchronization through parallel composition. With the image composition
scheduler, the composition cost is reduced even more by avoiding unnecessary
network congestion.

122

cod2
0

20

40

60

80

C
o
m

p
o
si

ti
o
n
 T

ra
ff

ic
 [

M
B

]

cry grid

131.92

mirror nfs stal ut3 wolf Avg

Figure 6.14: Traffic load of parallel image composition.

Every 1 Tri
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

Every 256 Tris Every 512 Tris Every 1024 Tris

CHOPIN CHOPIN+CompSched IdealCHOPIN

Figure 6.15: Performance sensitivity to the frequency of updates sent to draw
command scheduler (baseline is primitive duplication with configura-
tions from Table 6.2).

Distributing draw commands to different GPUs can potentially reduce the
effectiveness of occlusion testing, because sub-images might not have the smallest
depth value for each pixel before image composition. However, we find that the
impact is minor: the number of processed fragments in ROPs only increases by
3.6%, 6.5%, and 8.4% in systems of 2, 4, and 8 GPUs, which still permits speedups
up to 1.56×.

6.6.2 Composition Traffic Load

To reduce network traffic, CHOPIN only exchanges screen regions assigned to
the GPUs that are communicating at any given moment. We also filter out the
screen tiles that are not rendered by any draw commands, as they do not need to be
composed. As Figure 6.14 shows, the average traffic load of image composition is
only 51.66MB. Figure 6.13 shows that this does not create a substantial execution

123

overhead, especially with the image composition scheduler enabled. The large traffic
load in grid is due to many large triangles that cover big screen regions; we leave
optimizing this to future work.

In our experiments, we allow the GPUs to update the draw command scheduler
statistics for every triangle processed, an average of 1.7MB traffic with 4B message
size. To account for scaling to much larger systems and much larger triangle
counts, however, we also investigated how a larger update interval would affect the
performance of CHOPIN. Figure 6.15 sweeps this update frequency from every
triangle to every 1024 triangles on an otherwise identical system; the average
performance improvement of CHOPIN drops very slightly from 1.25× to 1.22×.
With updates every 1024 triangles and 4B messages, the total update traffic load
would be 4KB for 1 million triangles and 4MB for 1 billion triangles. The image
composition scheduler receives notifications from GPUs at composition boundaries
that they are ready to accept work, and sends notifications back to GPUs — 7
requests and 7 responses for each GPU in an 8-GPU system, plus an 8th pair to
compose with the background — which results in

(
8 8

)
×8×4 = 512B with 4B

messages. Both are negligible compared to sub-image frame content.

6.6.3 Sensitivity Analysis

To understand the relationship between our architectural parameters and the perfor-
mance of CHOPIN, we performed sensitivity studies across a range of design space
parameters.

GPU count. Even though integrating more GPUs in a system can provide
abundant resources to meet the constantly growing computing requirements, it also
can impose bigger challenge on inter-GPU synchronizations. As Figure 6.16 shows,
GPUpd is constrained by the sequential primitive distribution, and performance
does not scale with GPU count. In contrast, because CHOPIN parallelizes image
composition, the inter-GPU communication is also accelerated with more GPUs.
Therefore, the performance of CHOPIN is scalable and the improvement versus
prior SFR solutions grows as the number of GPUs increases. Meanwhile, the image
composition scheduler becomes more effective while GPU count is bigger: this is
because naïve inter-GPU communication for image composition can congest the

124

2 GPUs
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

4 GPUs 8 GPUs 16 GPUs

GPUpd IdealGPUpd CHOPIN CHOPIN+CompSched IdealCHOPIN

Figure 6.16: Performance sensitivity to the number of GPUs (for each GPU
count configuration, baseline is primitive duplication with the same
GPU count and other settings as in Table 6.2).

16 GB/s
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

32 GB/s 64 GB/s 128 GB/s

GPUpd IdealGPUpd CHOPIN CHOPIN+CompSched IdealCHOPIN

Figure 6.17: Performance sensitivity to inter-GPU link bandwidth (baseline is
primitive duplication with configurations of Table 6.2).

network more frequently with more GPUs, which is a bigger bottleneck for a larger
system.

Inter-GPU link bandwidth and latency. Since inter-GPU synchronization
relies on the inter-GPU interconnect, we investigated sensitivity to link bandwidth
and latency. CHOPIN performance scales with bandwidth (Figure 6.17), unlike
GPUpd. Similarly, CHOPIN is not significantly affected by link latency (Figure 6.18),
unlike GPUpd where latency quickly bottlenecks sequential primitive exchange.

Composition group size threshold. This parameter makes a tradeoff between
the redundant geometry processing and the image composition overhead: if the
number of primitives inside a composition group is smaller than a specific threshold,
CHOPIN reverts to primitive duplication (see Figure 6.6). In theory, this threshold
could be important: if set too small, it might not filter out most composition groups

125

100 Cycles
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

200 Cycles 300 Cycles 400 Cycles

GPUpd IdealGPUpd CHOPIN CHOPIN+CompSched IdealCHOPIN

Figure 6.18: Performance sensitivity to inter-GPU link latency (baseline is
primitive duplication with configurations of Table 6.2).

256 Tris
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

1024 Tris 4096 Tris 16384 Tris

CHOPIN CHOPIN+CompSched IdealCHOPIN

Figure 6.19: Performance sensitivity to the threshold of composition group
size (baseline is primitive duplication with configurations of Table 6.2).

with few primitives; and if set too big, we can lose the potential performance
improvement of parallel image composition. However, as Figure 6.19 shows, it turns
out that the performance of CHOPIN is not very sensitive to the configuration of
threshold value, and the threshold should be of little concern to programmers.

The main reason for the lack of sensitivity is that the statistic distribution of
composition group sizes is bipolar: most composition groups have either a large
number of triangles (e.g., consecutive draw commands for objects rendering) or
very few triangles (e.g., background draw commands), and many threshold settings
will separate them. For example, if the threshold is set as 4,096, CHOPIN will
accelerate 6.5 composition groups on average, but those groups cover 92.44% of the
triangles in the entire application. Enlarging the threshold to 16,384 will accelerate
5.25 composition groups, and cover 89.83% triangles on average.

126

6.6.4 Hardware Costs

The draw command scheduler and image composition scheduler are the main
hardware cost of CHOPIN system. In an 8-GPU system, both schedulers have 8
entries. Each entry of draw command scheduler has two fields: the number of
scheduled triangles and the number of processed triangles. To cover the requirements
of most existing and future applications, we conservatively allocate 64 bits for each
field. Therefore, the total size of draw command scheduler is 128 bytes.

As discussed in Chapter 6.6.3, with a group size threshold of 4,096, up to 13 (6.5
on average) draw command groups will trigger image composition, so we assume one
byte is enough to represent a CGID for the image composition scheduler. The Ready,
Receiving and Sending flags are all single bits. SentGPUs and ReceivedGPUs are
bit vectors with as many bits as the number of GPUs in the system (for us, one byte).
Therefore, the total size of the image composition scheduler in our implementation
is 27 bytes.

6.6.5 Discussion

Rendering workloads scale in two ways: with resolution and with triangles per pixel.
As resolution increases to 4K and beyond, triangle counts at iso-quality increase as
well. As visual quality advances, however, triangle counts per pixel also increase —
each frame of the latest game trends to have millions or billions of triangles which
sizes are often the same as pixels [9]. This means that the performance overhead
of redundant geometry processing and sequential inter-GPU primitive exchange in
prior SFR solutions will increase, and the corresponding benefits of CHOPIN will
grow.

As is, CHOPIN is applicable to NVIDIA DGX-scale systems. Systems which
are significantly larger than this (e.g., 1024 GPUs [85]) may need more complicated
rendering mechanisms, such as the combination of AFR and SFR.

6.7 Summary
In this chapter, we introduce CHOPIN, a novel architecture for split frame rendering
in multi-GPU systems. CHOPIN is a sort-last rendering scheme which distributes
each draw command to a specific GPU and avoids redundant geometry processing.

127

By taking leveraging the parallelism of image composition and modern high-
speed inter-GPU links, CHOPIN also obviates the need for sequential inter-GPU
communication.

CHOPIN includes two novel schedulers: a draw command scheduler to address
load imbalance, and an image composition scheduler to reduce network congestion.
All in all, CHOPIN outperforms the best prior work by up to 1.56× (1.25× gmean);
and in contrast to existing solutions, scales as the number of GPUs grows.

128

Chapter 7

Related Work

This chapter discusses related work for this dissertation. We introduce the commonly
enforced memory consistency models of CPUs and GPUs in Chapter 7.1. We survey
different cache coherence protocols in Chapter 7.2. Chapter 7.3 describes the related
work on transactional memories. In Chapter 7.4, we talk about previous proposals
of graphics processing.

7.1 Work Related to Memory Consistency Enforcement
Strong Consistency in GPUs. Hechtman and Sorin first made the case that the
performance impact of Sequential Consistency (SC) is likely small in GPUs [94].
Singh et al [220] observed that, while this was true for most workloads, some suffered
severe penalties with SC because of read-only and private data; they proposed to
classify these accesses at runtime and permit reordering while maintaining SC for
read-write shared data. Relativistic Cache Coherence (RCC) approach is orthogonal:
we focus on SC stall latency, and improve performance for both read-write and read-
only data. Both [94] and [220] used a CPU-like setup with MESI and write-back L1
caches. In GPUs, however, write-through L1s perform better [221]: GPU L1 caches
have very little space per thread, so a write-back policy brings infrequently written
data into the L1 only to write it back soon afterwards. Commercial GPUs have
write-through L1s [21, 165, 167]. RCC studies GPU-style write-through L1 caches,
and compares against the best prior GPU implementation of weak consistency [221].

129

Weak Consistency in GPUs. Although above work argued to enforce SC
in GPUs and they found that relaxed memory models could not significantly
outperform SC, modern GPU products still enforce relaxed memory models, as
weak models allow for more microarchitectural flexibility and arguably better
performance/power/area tradeoffs. Many previous work has aimed to enforce relaxed
consistency in GPUs with different coherence optimizations [18, 95, 117, 216]. In
a pushing towards generality, GPU vendors have changed from conventional bulk-
synchronous towards scoped memory models [2, 112, 171]. Both NVIDIA [135] and
AMD [98] have published their formalized scoped memory models. We optimize
HMG by leveraging the recent formal definitions of scoped memory model [98, 135]
and provide efficient coherence support for multi-GPU system. Sinclair et al [216]
adapted DeNovo [59] to GPUs with DRF-0 and HRF variants, and argued that the
benefits of HRF over DRF-0 do not warrant the additional complexity of scopes.
However, their evaluation was conducted within a single GPU, the latency gap
between the broadest and narrowest scope is an order of magnitude larger in multi-
GPU environments. Meanwhile, DeNovo requires software to expose additional
details to the coherence hardware, while HMG requires no software changes.

Strong Consistency in CPUs. Many quills have been sacrificed to argue that
sequential consistency is desirable in CPUs and propose how it could be efficiently
implemented [12, 36, 50, 79, 81, 82, 84, 89, 131, 194, 219, 238]. Generally,
speculation support or other hardware modifications are required to overcome the
overheads of SC. Lin et al [131] and Gope et al [84] also used logical order to
enforce SC in a CPU setting. RCC shares the conviction that sequential consistency
is preferred, but focus on GPUs, which have different architectural constraints (e.g.,
no speculation support).

Weak Consistency in CPUs. Even though lots of academic work has been
proposed to support SC in CPUs, almost all industrial vendors choose to relax
memory order constraints for performance improvement. The widely employed
memory consistency models in industry include Total Store Ordering (TSO) [181],
Partial Store Ordering (PSO) [225], Release Consistency (RC) [78], ARMv8 [26],
IBM Power [205], and so on; all of them made different tradeoffs about the
performance, complexity, and programmability. We have more detailed discussions
about memory consistency models in Chapter 2.3.

130

7.2 Work Related to Cache Coherence Protocol
GPU Coherence. We have discussed most of the existing GPU coherence protocols
in Section 5.3. Besides them, Singh et al [221] proposed a GPU coherence protocol
based on physical timestamps, and showed that MESI and write-back caches suffered
NoC traffic and performance penalties in GPUs. While the consistency model is
weak throughout, the base version (TC-strong) can support SC if the core does
not permit multiple outstanding memory operations from one warp; we use this
SC variant as a baseline of RCC. The improved version (TC-weak) cannot support
SC, but offers 30% better performance; we use this as a comparison of RCC. RCC
uses logical rather than physical timestamps, has lower complexity, and closes the
performance gap between SC and relaxed memory model. However, all this work
considered neither architecture hierarchy nor scoped memory model. In contrast,
HMG explores the coherence support for future deeply hierarchical GPU systems
with scoped memory model enforcement.

Timestamp-Based Cache Coherence. Nandy and Narayan [156] first observed
that timestamps can reduce interconnect traffic due to invalidate messages in MSI-
like protocols, but their protocol did not support SC. Shim et al [211] proposed LCC,
a sequentially consistent library protocol, for multi-cores; LCC is equivalent to our
TC-strong baseline. Singh et al [221] adapted LCC to GPUs and proposed a higher-
performance weakly ordered variant with a novel fence completion mechanism;
Kumar et al [119] used TC-weak for FPGA accelerators. Recently, Yao et al [250]
adapted TC-weak to multi-cores by tracking writes with a Bloom filter. All of
these protocols use physical timestamps, and SC variants must stall stores (and weak
variants must stall fences) until completion; RCC uses logical time and stalls neither
stores nor fences.

Lamport [122] first observed that consistency need only be maintained in logical
time. This fact has been used to implement coherence on a logically ordered
bus (e.g., [124, 223]) and to extend snooping coherence protocols to non-bus
interconnects [14, 138]. Meixner and Sorin used logical timestamps to dynamically
verify consistency models [139]. Yu et al [255] proposed using logical timestamps
to directly implement coherence in CPU-style multi-cores, but maintains exclusive
write states and recall/downgrade messages that RCC wishes to avoid to reduce

131

store latencies. At the same time, architectural features not present on GPUs (e.g.,
speculative execution) are required by [257] to support a timestamp speculation
scheme. RCC shares the notion of keeping coherence with logical timestamps, but
eschews exclusive states to focus on reducing store latencies. RCC is a simpler
protocol that offers best-in-class performance in GPUs.

Hierarchical Cache Coherence. Coherence hierarchy has been commonly
employed in CPUs [237, 239]. Most hierarchical CPU designs [80, 86, 88, 126, 153]
have adopted MESI-like coherence, which has been proven to be a poor fit for
GPUs [95, 221]. HMG shows that the complexity of extra states is also unnecessary
for hierarchical GPUs. Both DASH [126] andWildFire [88] increased the complexity
even more by employing the mixed coherence policy: intra-cluster snoopy coherence
and inter-cluster directory-based coherence. To implement consistency model
efficiently, Alpha GS320 [80] separated the commit events to allow time-critical
replies to bypass inbound requests without violating memory order constraints.
HMG can achieve almost optimal performance without such overheads.

Heterogeneous Cache Coherence. Shared data synchronization in the unified
memory space of heterogeneous systems also requires efficient coherence protocols.
Lowe-Power et al. proposed a heterogeneous system coherence for integrated
CPU-GPU systems [188]. It replaced the standard directory with a region directory
to reduce the bandwidth bottleneck of GPU memory requests. Projects such as
Crossing Guard [179] and Spandex [19] proposed flexible coherence interfaces
to integrate heterogeneous computing devices. We expect that HMG would be
integrated nicely with such schemes due to its simple states and clear coherence
hierarchy.

7.3 Work Related to Transactional Memory
GPU Transactional Memory (TM). To date, all hardware TM proposals for GPUs
have been based on KiloTM [77]; this system combines lazy version management
with lazy, value-based conflict detection. Follow-up work [76] extended KiloTM
with an intra-warp conflict detection mechanism and a silent-commit filter for
read-only transactions based on physical timestamps. A later proposal [55] added
global broadcast updates about currently committing transactions, and leveraged this

132

to pause or abort doomed transactions; we use an idealized version of this as one
of our baselines. GPU-LocalTM [234] is a limited form of transactional memory
that guarantees atomicity only within a core’s scratchpad; Bloom filters [35] are
used for conflict detection. Software TM proposals for GPUs have used either per-
object write locks [48] or combined value-based detection with TL2-like timestamp
approach [248]. Given special DRAM subarrays [209], and at the cost of substantial
memory overheads and extensive OS/software changes, GPU snapshot isolation [56]
can reduce abort rates in long transactions by buffering many concurrent memory
states; it retains two-round-trip lazy validation and must update snapshot versions in
DRAM, resulting in even longer commit latencies.

CPU Hardware TM. Since hardware TM was first proposed [96, 228], many
CPU implementations have been proposed. Many leverage the existing inter-core
coherence mechanism to identify conflicts, either by modifying the coherence
protocol [51, 60, 66, 233], adding extra bits to the coherence state [37, 149, 202], or
leveraging coherence to update read/write signatures [46, 144, 252]. Existing GPU
coherence proposals, however, cannot support eager TM: they either rely on special
language-level properties [216], eschew write atomicity [221], or cannot support
detecting conflict times [195]. Other TM proposals [49, 51, 89, 116, 189, 236] rely
on signature or update broadcasts, or on software-assisted detection [212, 213, 214].
In contrast to TM, speculative lock elision can run parallel code in lock-free
manner without requiring instruction set changes, coherence protocol extensions, or
programmer support [191].

Timestamp-Based TM. Transactional memory schemes based on logical clocks
share commonalitieswith timestamp-based approaches. These have been usedmainly
in software TMs to maintain consistency [74]; hardware TMs have leveraged them
to maintain fairness and forward progress [23, 149, 192], snapshot isolation [133],
and in prior GPU work to avoid validation of read-only transactions [76].

7.4 Work Related to Graphics Processing
Graphics Processing inMulti-GPU Systems. GPUpd [114] and OO-VR [246] are
two multi-GPU proposals that attempt to leverage modern, high-speed inter-GPU
connections. However, as discussed in Section 6.2, GPUpd is bottlenecked by

133

a sequential inter-GPU primitive exchange step, while CHOPIN composes sub-
images in parallel. OO-VR is a rendering framework to improve data locality in
VR applications, orthogonal to our problem of efficient image composition for
Split Frame Rendering (SFR). Unlike OO-VR, the draw command distribution in
CHOPIN does not rely on statically computed parameters; CHOPIN also includes
an image composition scheduler to make full use of network resources.

NVIDIA’s SLI [166] proposed attempts to balance the workload by dynamically
adjusting how the screen is divided among GPUs. However, it still duplicates all
primitives in every GPU, and incurs the attendant overheads. Both DirectX 12 [7]
and Vulkan [6] expose multi-GPU hardware to programmers via Application
Programming Interface (API), but relying only on this would require programmers to
have exact static knowledge of the workload (e.g., workload distribution). CHOPIN
can simplify programming and deliver reliable performance through dynamic
scheduling in hardware.

Parallel Rendering Frameworks. Most SFR mechanisms were originally
implemented for PC clusters. Among these implementations, WireGL [102],
Chromium [103], and Equalizer [70] are high-level APIs which can allocate
workload among machines based on different configurations. However, when the
system is configured as sort-first, they use CPUs to compute the destinations of
each primitive, and performance is limited by the poor computation throughput of
CPUs. When the system is configured as sort-last, they assign one specific machine
to collect all sub-images from others for composition, which again constitutes a
bottleneck. In contrast, CHOPIN distributes draw commands to different GPUs
based on dynamic execution state, and all GPUs in the system contribute to image
composition in parallel.

To accelerate image composition, some implementations, like PixelFlow [146]
and Pixel-Planes 5 [75] even implemented application specific hardware, with
significant overheads. CHOPIN simply takes advantage of existing multi-GPU
system and high-performance inter-GPU links, and incurs very small hardware
costs. RealityEngine [15] and Pomegranate [71] aim to improve load balancing by
frequently exchanging data before geometry processing, before rasterization, and
after fragment processing; however, these complicated synchronization patterns are
hard to coordinate, and huge traffic load can be imposed on inter-GPU links.

134

Graphics Processing in Single-GPU and Mobile GPU Systems. Besides
parallel rendering, lots of work has also been done for graphics processing in single
GPU or mobile GPU systems. By leveraging the similarity between consecutive
frames, Arnau et al. proposed to use fragment memorization to filter out redundant
fragment computing [27]. Rendering Elimination [25] shares the same observation
of similarity, but it excludes redundant computing at a coarser granularity of screen
tiles. To verify fragment occlusion as early as possible, Anglada et al. proposed
early visibility resolution, a mechanism that leverages the visibility information
obtained in a frame to predict the visibility of next frame [24]. Texture data is a
dominant consumer of off-chip memory bandwidth, so Xie et al. explored the use
of process-in-memory to reduce texture memory traffic [244]. In contrast to all
these efforts, CHOPIN focuses on the efficient inter-GPU synchronization of parallel
rendering in multi-GPU systems.

135

Chapter 8

Conclusions and Future Work

This chapter concludes this dissertation and provides directions for future work.

8.1 Conclusions
After numerous researchers have contributed their innovations to both hardware
architecture and software Application Programming Interface (API), the GPU has
successfully built its own ecosystem which can provide high-performance and
cost-efficient computing service to a wide range of applications. True to its original
usage of accelerating graphics processing, GPU is a highly parallel architecture that
is designed to exploit find-grained Data Level Parallelism (DLP) and Thread Level
Parallelism (TLP). It trades off single-thread latency for system-level throughput.
Therefore, guaranteeing highly available parallelism during execution is critical to
maximize GPU performance.

In parallel programming, individual threads are not totally independent – opera-
tions on shared data and hardware structures need to be synchronized under specific
ordering constraints. Inefficient synchronization support can potentially serialize
threads and reduce available parallelism, significantly hurting GPU performance. In
this dissertation, we propose four enhancements to help GPU architectures provide
efficient synchronization support to various applications.

First, we propose Relativistic Cache Coherence (RCC) in Chapter 3, a simple
cache coherence protocol which can enforce Sequential Consistency (SC) efficiently

136

with distributed logical timestamps. Thanks to the timestamp independence of
different SM cores, RCC can process store requests instantly by advancing the
timestamp of writing core, rather than waiting for all sharers become invalid. Hence,
RCC outperforms the best prior SC design by 29%, it also closes the performance
gap between SC and weak memory model to only 7%. Additionally, RCC allows for
switching between strong (RCC-SC) and weak (RCC-WO) consistency models at
runtime with best-in-class performance and no hardware overhead.

Second, we propose GETM in Chapter 4, a novel logical-timestamp-based eager
conflict detection mechanism for GPU Hardware Transactional Memory (HTM) to
reduce the excessive latency of prior lazy solution. GETM eagerly detects conflicts
by checking the timestamps of transactions and accessed data. Transactions are
aborted immediately once a conflict is detected, so transactions that have reached
commit point can be committed without additional validation. Benefiting from the
dramatically faster conflict detection and transaction commits, GETM is up to 2.1×
(1.2× gmean) faster than the best prior GPU TM proposal. Area overheads are 3.6×
lower, and power overheads are 2.2× lower.

Third, we propose HMG in Chapter 5, a two-state hierarchical cache coherence
protocol for efficient peer caching in multi-GPU systems with the enforcement
of scoped memory model. Coherence hierarchy is implemented to fully exploit
intra-GPU data locality and reduce the bandwidth cost of inter-GPU accesses.
As scoped memory models [98, 135] have been formalized as non-multi-copy-
atomic, HMG processes non-synchronization stores instantly without invalidation
acknowledgments; only synchronizations stores are stalled to guarantee correct data
visibility. Therefore, it is unnecessary to add transient coherence states and other
hardware structures to reduce stalls, which has been very few. In a 4-GPU system,
HMG can achieve 97% of the performance of an idealized caching system.

Finally, we propose CHOPIN in Chapter 6, a scalable Split Frame Rendering
(SFR) scheme which fully takes advantage of the parallelism available in image
composition. CHOPIN can eliminate the performance overheads of redundant
computing and sequential primitive exchange that exist in prior solutions. CHOPIN
composes opaque sub-images out-of-order; adjacent transparent sub-images are
composed asynchronously by leveraging the associativity of pixel blending. We also
design a draw command scheduler and an image composition scheduler to address

137

the problems of load imbalance and network congestion. In an 8-GPU system,
CHOPIN outperforms the best prior work by up to 1.56× (1.25× gmean).

In summary, this dissertation shows that SC can be enforced efficiently in
single-GPU systems with simple RCC. However, considering the huge bandwidth
gap between inter- and intra-GPU links, future hierarchical multi-GPU architectures
could change this insight. To alleviate the performance impact of bandwidth-limited
inter-GPU links, we might need to relax the memory model to some extent and
add some extra structures to optimize remote GPU accesses. Although the latest
scoped memory model can potentially maximize application parallelism and simplify
hardware implementation by relaxing store atomicity and adding scope annotations,
it might impose big complexity on software programmers, thereby increasing the
occurrence of synchronization bugs, such as data-races. Therefore, we believe –
in future GPU systems – the tradeoff between memory model, performance, and
programmability needs to be explored more deeply.

This dissertation also shows that, with eager conflict detection, GPU HTM
and lock-based synchronizations can have comparable performance. However,
to advocate the adoption of HTM in real GPU systems, we probably need to
extend current GPU memory model with transaction-related rules for correctness
guarantee. The combination of relaxed memory model and HTM could be a good
tradeoff. In this way, we can reorder memory requests outside transactions, while
memory requests inside transactions are executed sequentially. Additionally, it’s
also necessary to further reduce implementation cost of GPU HTM.

8.2 Directions of Future Work

8.2.1 Logical-Time Cache Coherence in Heterogeneous Systems

In Chapter 3, we proposed Relativistic Cache Coherence (RCC), a logical-timestamp-
based cache coherence protocol for efficient Sequential Consistency (SC) in GPUs.
Previously, a logical-timestamp coherence protocol, TARDIS, was proposed for
CPUs [255, 257]. Considering the fact that industry vendors have exposed a Unified
Memory (i.e, unified virtual address space) abstraction to programmers [168],
a logical-timestamp-based cache coherence protocol for systems with integrated

138

CPUs and GPUs might be efficient to provide both high performance and easy
programming. Meanwhile, the logical-timestamp coherence protocol also could
be extended to hardware accelerators, even though only physical-timestamp cache
coherence was exploited for FPGA accelerators [119]. Maintaining a consistent
logical-timestamp cache coherence across heterogeneous systems also can reduce
the notorious complexity of hardware verification, because it’s unnecessary to verify
multiple different cache coherence protocols and the interface between them.

In heterogeneous systems, applications running on different processors usually
demonstrate super diverse execution characteristics, which will create different
performance requirements for coherence protocol design. For example, at which
granularity should the cache coherence be maintained between CPUs and GPUs
need to be well explored. A granularity that is too small will result in frequent data
communications and possibly under-utilize the connection bandwidth, but a coarse
granularity might create lots of false sharing and potentially reduce data locality.
Meanwhile, inefficient lease extension also could mess up data exchange between
CPUs and GPUs, significantly hurting performance.

8.2.2 Reducing Transaction Abort Rates of GETM

In Chapter 4, we propose GETM, the first GPU Hardware Transactional Memory
(HTM) that has eager conflict detection mechanism. Even though GETM works
faster than all prior GPU TM proposals, it results in higher abort rates (Table 4.4).
This depends on the available information that can be leveraged to judge which
transaction should be aborted while conflicts happened. In lazy mechanisms, as
transactions have finished, all information acquired during execution can be taken
advantage. In contrast, eager mechanisms need to make instant decisions during
transaction execution. A novel warp scheduling algorithm would be helpful if it can
predict the transactions that are likely to conflict. One way to approach scheduler is
to profile the aborts and classify them based on different abort reasons. Then, a new
scheduler could be designed to avoid or reduce transactions aborts.

Compared to prior designs, GETM enables a higher concurrency to allow
more transaction to execute in parallel (Table 4.4). However, GETM is not
aware of dynamic execution by assuming a fixed concurrency level. This can be

139

optimized, because we observed that the level of contention between transactions
changes dynamically at runtime. For example, Barnes Hut starts out as a high-
contention application where every transaction tries to insert a leaf node near the
root, and gradually relaxes into low-contention as octree grows. Therefore, a control
mechanism could mitigate contention and reduce transaction abort rates, if it can
dynamically adjust the concurrency level.

8.2.3 Scoped Memory Model vs. Easy Programming

In Chapter 5, we optimized HMG by leveraging the non-multi-copy-atomicity of the
latest scoped GPU memory models [98, 135]. Although, in HMG, we successfully
eliminated the complexity of invalidation acknowledgments and transient coherence
states, the scope annotations which are inherent to the the latest memory models
can actually complicate the programming. Programmers need to be aware of the
scopes, at which the latest value of shared data is visible. Unreasonable scopes can
result in incorrect synchronizations. If the correct synchronization scope cannot
be determined according to static knowledge, programmers need to use a larger
scope conservatively, although it is unnecessary actually. Therefore, an abstraction
layer which can hide the complexity of scopes would simplify the programming and
advocate more users.

Considering that GPU architecture is latency-tolerant and GPU applications
do not have as much data sharing as CPUs, the GPU scoped memory models
might have some space to be enforced more strongly to reduce the effort on correct
synchronizations. Although prior work has concluded that SC can achieve similar
performance to weak memory models [195] and the scope complexity of HRF [98]
is not necessary for high performance [216], these researches were conduced
in conventional single-GPU systems. In modern or forward-looking multi-GPU
systems, the latency/bandwidth gap between the broadest and narrowest scope is an
order of magnitude larger. Therefore, SC or Data-Race-Free (DRF) might be too
strong or insufficient to guarantee high performance. The tradeoff between memory
model, performance, and programmability needs to explored more deeply.

140

8.2.4 Scaling CHOPIN to Larger Systems

CHOPIN (Chapter 6) as-is is applicable for NVIDIA DGX-scale system [170, 173].
Systems which are significantly larger (e.g., 1024 GPUs) may need more innovations.
Meanwhile, insatiable appetite for better visual quality has led to higher and higher
resolutions, which can potentially increase the inter-GPU traffic load of image
composition. These problems may lead to future research directions as follows.

First, adopting pure Split Frame Rendering (SFR) mode in a larger system
will make each GPU receive a small number of draw commands that is hard to
be load-balanced. At the meantime, it will also be much more challenging for
the scheduling of image composition. Hence, to make full use of the available
GPUs, the combination of Alternate Frame Rendering (AFR) and SFR probably
will be a better choice. For example, in the combined mode, GPUs are divided into
multiple groups, AFR and SFR are adopted for the inter- and intra-group rendering
respectively. The schedulers in Chapters 6.4.4 and 6.4.5 are proposed for SFR, so
they are still applicable for the intra-group rendering. Considering the workload
variance between frames, a mechanism which can dynamically adjust the GPU
group size could be helpful to achieve a better and smoother user experience.

Second, we found that larger traffic load of image composition can impact the
performance benefit of CHOPIN (e.g., grid in Figures 6.12 and 6.14). Intuitively,
we imagine an effective frame content compression mechanism would be helpful
for this issue. Moreover, reducing composition frequency could be an alternative
choice, but this might need the change in programming model to help programmers
reorganize draw commands and create fewer but larger composition groups.

Finally, the proposed schedulers in Chapter 6 have fixed functions, which
are not adaptive to various programs. However, modern graphics applications
are becoming more and more diverse, so designing configurable schedulers and
exposing configurations to software would be desirable for programmers. This
might need the extension of graphics APIs, such as DirectX [7] and Vulkan [10].

141

Bibliography

[1] AMD’s answer to Nvidia’s NVLink is xGMI, and it’s coming to the new
7nm Vega GPU. https://www.pcgamesn.com/amd-xgmi-vega-20-gpu-nvidia-
nvlink. Accessed on 2020-06-25. → pages 4, 12, 75, 100, 103

[2] HSA Platform System Architecture Specification Version 1.2. http://www.
hsafoundation.com/?ddownload=5702. Accessed on 2020-06-25. → pages
75, 78, 130

[3] How to fix micro stutter in videos+games? https://www.reddit.com/r/nvidia/
comments/3su8qq/how_to_fix_micro_stutter_in_videosgames/, 2016. Ac-
cessed on 2020-06-25. → page 103

[4] Nvidia GeForce GTX 1080i review: The best 4K graphics card right
now. https://www.rockpapershotgun.com/2018/01/30/nvidia-geforce-gtx-
1080-review-best-4k-graphics-card/, 2018. Accessed on 2020-06-25. →
page 103

[5] What is microstutter and how do I fix it? https://www.pcgamer.com/what-is-
microstutter-and-how-do-i-fix-it/, 2018. Accessed on 2020-06-25. → page
103

[6] Vulkan 1.1 out today with multi-GPU support, better DirectX compatibil-
ity. https://arstechnica.com/gadgets/2018/03/vulkan-1-1-adds-multi-gpu-
directx-compatibility-as-khronos-looks-to-the-future/, 2018. Accessed on
2020-06-25. → page 134

[7] Direct3D12ProgrammingGuide. https://docs.microsoft.com/en-us/windows/
win32/direct3d12/directx-12-programming-guide, 2019. Accessed on 2020-
07-08. → pages 2, 134, 141

[8] How to fix stuttering of CrossFire? https://www.reddit.com/r/crossfire/
comments/ddlcl9/how_to_fix_stuttering_of_crossfire/, 2019. Accessed on
2020-06-25. → page 103

142

https://www.pcgamesn.com/amd-xgmi-vega-20-gpu-nvidia-nvlink
https://www.pcgamesn.com/amd-xgmi-vega-20-gpu-nvidia-nvlink
http://www.hsafoundation.com/?ddownload=5702
http://www.hsafoundation.com/?ddownload=5702
https://www.reddit.com/r/nvidia/comments/3su8qq/how_to_fix_micro_stutter_in_videosgames/
https://www.reddit.com/r/nvidia/comments/3su8qq/how_to_fix_micro_stutter_in_videosgames/
https://www.rockpapershotgun.com/2018/01/30/nvidia-geforce-gtx-1080-review-best-4k-graphics-card/
https://www.rockpapershotgun.com/2018/01/30/nvidia-geforce-gtx-1080-review-best-4k-graphics-card/
https://www.pcgamer.com/what-is-microstutter-and-how-do-i-fix-it/
https://www.pcgamer.com/what-is-microstutter-and-how-do-i-fix-it/
https://arstechnica.com/gadgets/2018/03/vulkan-1-1-adds-multi-gpu-directx-compatibility-as-khronos-looks-to-the-future/
https://arstechnica.com/gadgets/2018/03/vulkan-1-1-adds-multi-gpu-directx-compatibility-as-khronos-looks-to-the-future/
https://docs.microsoft.com/en-us/windows/win32/direct3d12/directx-12-programming-guide
https://docs.microsoft.com/en-us/windows/win32/direct3d12/directx-12-programming-guide
https://www.reddit.com/r/crossfire/comments/ddlcl9/how_to_fix_stuttering_of_crossfire/
https://www.reddit.com/r/crossfire/comments/ddlcl9/how_to_fix_stuttering_of_crossfire/

[9] A first look at Unreal Engine 5. https://www.unrealengine.com/en-US/blog/a-
first-look-at-unreal-engine-5, 2020. Accessed on 2020-06-25. → page 127

[10] Vulkan® 1.2.146 - A Specification (with all registered Vulkan exten-
sions). https://www.khronos.org/registry/vulkan/specs/1.2-extensions/pdf/
vkspec.pdf, 2020. Accessed on 2020-07-08. → pages 2, 141

[11] S. V. Adve and M. D. Hill. Weak Ordering-A New Definition. In Proceedings
of the 17th International Symposium on Computer Architecture (ISCA), pages
2–14. IEEE, 1990. → page 15

[12] S. Aga, A. Singh, and S. Narayanasamy. zFENCE: Data-less Coherence for
Efficient Fences. In Proceedings of the 29th International Conference on
Supercomputing (ICS), pages 295–305. ACM, 2015. → page 130

[13] N. Agarwal, T. Krishna, L. S. Peh, and N. K. Jha. GARNET: A Eetailed
On-Chip Network Model inside a Full-System Simulator. In International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 33–42. IEEE, 2009. → page 38

[14] N. Agarwal, L.-S. Peh, and N. K. Jha. In-Network Snoop Ordering: Snoopy
Coherence on Unordered Interconnects. In Proceedings of the 15th Inter-
national Symposium on High Performance Computer Architecture (HPCA),
pages 67–78. IEEE, 2009. → page 131

[15] K. Akeley. Reality Engine Graphics. In Proceedings of the 20th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH),
pages 109–116. ACM, 1993. → page 134

[16] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema, D. Po-
etzl, T. Sorensen, and J.Wickerson. GPUConcurrency: Weak Behaviours and
Programming Assumptions. In Proceedings of the 20th International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 577–591. ACM, 2015.→ pages 4, 14, 20, 21, 38, 81

[17] D. G. Aliaga and A. Lastra. Automatic Image Placement to Provide A
Guaranteed Frame Rate. In Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH), pages 307–316,
1999. → page 115

[18] J. Alsop, M. S. Orr, B. M. Beckmann, and D. A. Wood. Lazy Release
Consistency for GPUs. In Proceedings of the 49th International Symposium
on Microarchitecture (MICRO), page 26. IEEE, 2016. → pages 76, 78, 130

143

https://www.unrealengine.com/en-US/blog/a-first-look-at-unreal-engine-5
https://www.unrealengine.com/en-US/blog/a-first-look-at-unreal-engine-5
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/pdf/vkspec.pdf
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/pdf/vkspec.pdf

[19] J. Alsop, M. D. Sinclair, and S. V. Adve. Spandex: A Flexible Interface for
Efficient Heterogeneous Coherence. In Proceedings of the 45th International
Symposium on Computer Architecture (ISCA), pages 261–274. IEEE, 2018.
→ page 132

[20] AMD. AMD CrossFire guide for Direct3D® 11 applica-
tions. https://gpuopen-librariesandsdks.github.io/doc/AMD-CrossFire-guide-
for-Direct3D11-applications.pdf. Accessed on 2020-06-25.→ pages 5, 7, 103

[21] AMD. AMD Graphics Cores Next (GCN) Architecture. https://www.
techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf, 2012. Ac-
cessed on 2020-06-25. → pages 20, 21, 22, 32, 129

[22] AMD. Multi-Chip Module Architecture: The Right Approach for Evolving
Workloads. http://developer.amd.com/wordpress/media/2017/11/LE-62006-
SB-Latency-170824-Final-1.pdf, August 2017. Accessed on 2020-06-25. →
page 100

[23] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E. Leiserson, and S. Lie.
Unbounded Transactional Memory. In Proceedings of the 11th International
Symposium on High Performance Computer Architecture (HPCA), pages
316–327. IEEE, 2005. → pages 62, 133

[24] M. Anglada, E. de Lucas, J.-M. Parcerisa, J. L. Aragón, and A. González.
Early Visibility Resolution for Removing Ineffectual Computations in the
Graphics Pipeline. In Proceedings of the 25th International Symposium on
High Performance Computer Architecture (HPCA), pages 635–646. IEEE,
2019. → page 135

[25] M. Anglada, E. de Lucas, J.-M. Parcerisa, J. L. Aragón, P. Marcuello, and
A. González. Rendering Elimination: Early Discard of Redundant Tiles in
the Graphics Pipeline. In Proceedings of the 25th International Symposium
on High Performance Computer Architecture (HPCA), pages 623–634. IEEE,
2019. → page 135

[26] ARM Ltd. ARM Architecture Reference Manual: ARMv8, for ARMv8-A
architecture profile. https://static.docs.arm.com/ddi0487/fb/DDI0487F_b_
armv8_arm.pdf, 2013. Accessed on 2020-06-25. → pages 19, 130

[27] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis. Eliminating Redundant
Fragment Shader Executions on aMobile GPU via HardwareMemoization. In
Proceeedings of the 41th International Symposium on Computer Architecture
(ISCA), pages 529–540. ACM, 2014. → page 135

144

https://gpuopen-librariesandsdks.github.io/doc/AMD-CrossFire-guide-for-Direct3D11-applications.pdf
https://gpuopen-librariesandsdks.github.io/doc/AMD-CrossFire-guide-for-Direct3D11-applications.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
http://developer.amd.com/wordpress/media/2017/11/LE-62006-SB-Latency-170824-Final-1.pdf
http://developer.amd.com/wordpress/media/2017/11/LE-62006-SB-Latency-170824-Final-1.pdf
https://static.docs.arm.com/ddi0487/fb/DDI0487F_b_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/fb/DDI0487F_b_armv8_arm.pdf

[28] D. C. Arnold, D. H. Ahn, B. R. De Supinski, G. L. Lee, B. P. Miller, and
M. Schulz. Stack Trace Analysis for Large Scale Debugging. In International
Parallel and Distributed Processing Symposium (IPDPS), pages 1–10. IEEE,
2007. → page 46

[29] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, A. Jaleel,
C.-J. Wu, and D. Nellans. MCM-GPU: Multi-Chip-Module GPUs for
Continued Performance Scalability. In Proceedings of the 44th International
Symposium on Computer Architecture (ISCA), pages 320–332. ACM, 2017.
→ pages 4, 11, 74, 75, 76, 92, 100, 103

[30] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi, C. J.
Rossbach, and O.Mutlu. Mosaic: AGPUMemoryManager with Application-
Transparent Support for Multiple Page Sizes. In Proceedings of the 50th
International Symposium on Microarchitecture (MICRO), pages 136–150.
ACM, 2017. → page 79

[31] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt. Ana-
lyzing CUDA Workloads Using a Detailed GPU Simulator. In International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 163–174. IEEE, 2009. → pages xiv, 10, 37, 38, 65, 91

[32] B. Bentley. Validating the Intel® Pentium® 4Microprocessor. In Proceedings
of the 38th Annual Design Automation Conference (DAC), pages 244–248,
2001. → page 42

[33] E. W. Bethel, H. Childs, and C. Hansen. High Performance Visualization:
Enabling Extreme-Scale Scientific Insight (Chapter 5). CRC Press, 2012. →
pages 7, 105

[34] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The Gem5 Simulator.
SIGARCH Computer Architecture News, 39:1–7, 2011. → page 37

[35] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.
Communications of the ACM, 13(7):422–426, 1970. → page 133

[36] C. Blundell, M. M. Martin, and T. F. Wenisch. InvisiFence: Performance-
Transparent Memory Ordering in Conventional Multiprocessors. In Proceed-
ings of the 36th International Symposium on Computer Architecture (ISCA),
pages 233–244. ACM, 2009. → page 130

145

[37] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A. Wood. TokenTM:
Efficient Execution of Large Transactions with Hardware Transactional
Memory. In Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 127–138. IEEE, 2008. → page 133

[38] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency Memory
Model. In Proceedings of the 29th International Conference on Programming
Language Design and Implementation (PLDI), pages 68–78. ACM, 2008. →
page 15

[39] C. Boyd. DirectX 11 Compute Shader. https://docplayer.net/36909319-
Directx-11-compute-shader-chas-boyd-architect-windows-desktop-and-
graphics-technology-microsoft.html, 2008. Accessed on 2020-06-25. →
page 17

[40] A. Brownsword. Cloth in OpenCL. In GDC, 2009. → pages 38, 66

[41] S. Burckhardt, R. Alur, and M. M. K. Martin. Verifying Safety of a Token
Coherence Implementation by Parametric Compositional Refinement. In
International Workshop on Verification, Model Checking, and Abstract
Interpretation (VMCAI), pages 130–145, 2005. → page 42

[42] M. Burtscher and K. Pingali. An Efficient CUDA Implementation of the Tree-
Based Barnes Hut n-Body Algorithm. In GPU Computing Gems Emerald
Edition, pages 75–92. Elsevier, 2011. → pages 38, 66

[43] M. Burtscher, R. Nasre, and K. Pingali. A Quantitative Study of Irregular Pro-
grams on GPUs. In International Symposium on Workload Characterization
(IISWC), pages 141–151. IEEE, 2012. → page 75

[44] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Le. Robust
Architectural Support for Transactional Memory in the Power Architecture. In
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), pages 225–236. ACM, 2013. → page 47

[45] J. F. Cantin, M. H. Lipasti, and J. E. Smith. The Complexity of Verifying
Memory Coherence. In Proceedings of the 15th Annual Symposium on
Parallel Algorithms and Architectures (SPAA), pages 254–255. ACM, 2003.
→ page 15

[46] J. Casper, T.Oguntebi, S.Hong, N.G.Bronson, C.Kozyrakis, andK.Olukotun.
Hardware Acceleration of Transactional Memory on Commodity Systems. In
Proceedings of the 16th International Conference on Architectural Support

146

https://docplayer.net/36909319-Directx-11-compute-shader-chas-boyd-architect-windows-desktop-and-graphics-technology-microsoft.html
https://docplayer.net/36909319-Directx-11-compute-shader-chas-boyd-architect-windows-desktop-and-graphics-technology-microsoft.html
https://docplayer.net/36909319-Directx-11-compute-shader-chas-boyd-architect-windows-desktop-and-graphics-technology-microsoft.html

for Programming Language and Operating Systems (ASPLOS), pages 27–38.
ACM, 2011. → page 133

[47] D. Cederman and P. Tsigas. On Dynamic Load Balancing on Graphics
Processors. In Proceedings of the 23rd SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware (GH), pages 57–64. ACM, 2008. → page
38

[48] D. Cederman, P. Tsigas, and M. T. Chaudhry. Towards a Software Trans-
actional Memory for Graphics Processors. In Eurographics Symposium on
Parallel Graphics and Visualization (EGPGV), pages 121–129, 2010. →
page 133

[49] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk Disambiguation
of Speculative Threads in Multiprocessors. In Proceedings of the 33rd
International Symposium on Computer Architecture (ISCA), pages 227–238.
ACM, 2006. → page 133

[50] L. Ceze, J. Tuck, P.Montesinos, and J. Torrellas. BulkSC:Bulk Enforcement of
Sequential Consistency. In Proceedings of the 34th International Symposium
on Computer Architecture (ISCA), pages 278–289. ACM, 2007. → page 130

[51] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek,
C. Kozyrakis, and K. Olukotun. A Scalable, Non-blocking Approach to
Transactional Memory. In Proceedings of the 13th International Symposium
on High Performance Computer Architecture (HPCA), pages 97–108. IEEE,
2007. → pages 50, 133

[52] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer,
and M. Tremblay. Rock: A High-Performance Sparc CMT Processor. IEEE
Micro, 29(2):6–16, 2009. → page 47

[53] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A Benchmark Suite For Heterogeneous Computing.
In International Symposium on Workload Characterization (IISWC), pages
44–54. IEEE, 2009. → pages 38, 77, 92

[54] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron. Pannotia:
Understanding Irregular GPGPU Graph Applications. In International
Symposium on Workload Characterization (IISWC), pages 185–195. IEEE,
2013. → page 75

147

[55] S. Chen and L. Peng. Efficient GPU Hardware Transactional Memory
through Early Conflict Resolution. In Proceedings of the 22nd International
Symposium on High Performance Computer Architecture (HPCA), pages
274–284. IEEE, 2016. → pages 47, 48, 65, 66, 72, 132

[56] S. Chen, L. Peng, and S. Irving. Accelerating GPU Hardware Transactional
Memory with Snapshot Isolation. In Proceedings of the 44th International
Symposium on Computer Architecture (ISCA), pages 282–294. IEEE, 2017.
→ pages 48, 133

[57] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer. cuDNN: Efficient Primitives for Deep Learning. CoRR,
abs/1410.0759, October 2014. URL http://arxiv.org/abs/1410.0759. → page
74

[58] L. Chien. How to Avoid Global Synchronization by Domino Scheme. NVIDIA
GPU Technology Conference (GTC), 2014. → pages 77, 92

[59] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve,
V. S. Adve, N. P. Carter, and C.-T. Chou. DeNovo: Rethinking the Memory
Hierarchy for Disciplined Parallelism. InProceedings of the 20th International
Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 155–166. IEEE, 2011. → page 130

[60] J. Chung, L. Yen, S. Diestelhorst, M. Pohlack, M. Hohmuth, D. Christie, and
D. Grossman. ASF: AMD64 Extension for Lock-Free Data Structures and
Transactional Memory. In Proceedings of the 43rd International Symposium
on Microarchitecture (MICRO), pages 39–50. IEEE, 2010. → pages 47, 133

[61] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan,
and L. A. Ness. Verification of the Futurebus+ cache coherence protocol.
Formal Methods in System Design, 6(2):217–232, 1995. → page 42

[62] W. J. Dally, C. T. Gray, J. Poulton, B. Khailany, J. Wilson, and L. Dennison.
Hardware-Enabled Artificial Intelligence. In Symposium on VLSI Circuits,
pages 3–6. IEEE, 2018. → page 11

[63] V.M.Del Barrio, C. González, J. Roca, A. Fernández, and E. Espasa. ATTILA:
A Cycle-Level Execution-Driven Simulator for Modern GPU Architectures.
In Proceedings of the International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 231–241. IEEE, 2006. → page 119

148

http://arxiv.org/abs/1410.0759

[64] G. Diamos, S. Sengupta, B. Catanzaro, M. Chrzanowski, A. Coates, E. Elsen,
J. Engel, A. Hannun, and S. Satheesh. Persistent RNNs: Stashing Recurrent
Weights On-Chip. In International Conference on Machine Learning (ICML),
pages 2024–2033, 2016. → page 77

[65] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In International
Symposium on Distributed Computing, pages 194–208. Springer, 2006. →
page 50

[66] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early Experience with a Com-
mercial Hardware Transactional Memory Implementation. In Proceedings of
the 14th International Conference on Architectural Support for Programming
Language and Operating Systems (ASPLOS), pages 157–168. ACM, 2009.
→ page 133

[67] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol Verification as a
Hardware Design Aid. In ICCD, volume 92, pages 522–525. Citeseer, 1992.
→ page 42

[68] M. Dubois, C. Scheurich, and F. Briggs. Memory Access Buffering in
Multiprocessors. In Proceedings of the 13rd International Symposium on
Computer Architecture (ISCA), pages 434–442. ACM, 1986. → pages 20, 37

[69] L. Durant, O. Giroux, M. Harris, and N. Stam. Inside Volta: The World’s
Most Advanced Data Center GPU. https://devblogs.nvidia.com/inside-volta/,
2017. Accessed on 2020-06-25. → pages 3, 45

[70] S. Eilemann, M. Makhinya, and R. Pajarola. Equalizer: A Scalable Parallel
Rendering Framework. IEEE transactions on visualization and computer
graphics (TVCG), 15(3):436–452, 2009. → pages 103, 104, 106, 134

[71] M. Eldridge, H. Igehy, and P. Hanrahan. Pomegranate: A Fully Scalable
Graphics Architecture. In Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRPAH), pages 443–454.
ACM, 2000. → page 134

[72] A. ElTantawy and T. M. Aamodt. MIMD Synchronization on SIMT Archi-
tectures. In Proceedings of the 49th International Symposium on Microarchi-
tecture (MICRO), pages 1–14. IEEE, 2016. → pages 4, 46

[73] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger.
Dark Silicon and the End of Multicore Scaling. In Proceedings of the 38th
International Symposium on Computer Architecture (ISCA), pages 365–376.
IEEE, 2011. → page 1

149

https://devblogs.nvidia.com/inside-volta/

[74] P. Felber, C. Fetzer, P. Marlier, and T. Riegel. Time-Based Software Transac-
tional Memory. Transactions on Parallel and Distributed Systems, 21(12):
1793–1807, 2010. → page 133

[75] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D. Ellsworth, S.Molnar,
G. Turk, B. Tebbs, and L. Israel. Pixel-Planes 5: A Heterogeneous Multi-
processor Graphics System Using Processor-Enhanced Memories. Siggraph
Computer Graphics, 23(3):79–88, 1989. → page 134

[76] W. W. L. Fung and T. M. Aamodt. Energy Efficient GPU Transactional Mem-
ory via Space-time Optimizations. In Proceedings of the 46th International
Symposium on Microarchitecture (MICRO), pages 408–420. IEEE, 2013. →
pages 4, 6, 47, 48, 50, 53, 54, 61, 63, 65, 66, 72, 132, 133

[77] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt. Hardware
Transactional Memory for GPU Architectures. In Proceedings of the 44th
International Symposium on Microarchitecture (MICRO), pages 296–307.
IEEE, 2011. → pages 4, 6, 47, 48, 54, 61, 63, 65, 66, 132

[78] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-
nessy. Memory Consistency and Event Ordering in Scalable Shared-Memory
Multiprocessors. In Proceedings of the 17th International Symposium on
Computer Architecture (ISCA), pages 15–26. IEEE, 1990.→ pages 20, 37, 130

[79] K. Gharachorloo, A. Gupta, and J. L. Hennessy. Two Techniques to Enhance
the Performance of Memory Consistency Models. In Proceedings of the 20th
International Conference on Parallel Processing (ICPP), 1991. → page 130

[80] K. Gharachorloo, M. Sharma, S. Steely, and S. Van Doren. Architecture and
Design of AlphaServer GS320. In Proceedings of the 9th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 13–24. ACM, 2000. → page 132

[81] C. Gniady and B. Falsafi. Speculative Sequential Consistency with Little
Custom Storage. In Proceedings of the 11th International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 179–188.
IEEE, 2002. → page 130

[82] C. Gniady, B. Falsafi, and T. N. Vĳaykumar. Is SC + ILP = RC? In
Proceedings of the 26th International Symposium on Computer Architecture
(ISCA), pages 162–171. ACM, 1999. → page 130

150

[83] J. Gong, S. Markidis, E. Laure, M. Otten, P. Fischer, and M. Min. Nekbone
Performance on GPUs with OpenACC and CUDA Fortran Implementations.
The Journal of Supercomputing, 72(11):4160–4180, 2016. → pages 77, 92

[84] D. Gope and M. H. Lipasti. Atomic SC for Simple In-order Processors.
In Proceedings of 20th the International Symposium on High Performance
Computer Architecture (HPCA), pages 404–415. IEEE, 2014. → pages
24, 130

[85] A. P. Grosset, M. Prasad, C. Christensen, A. Knoll, and C. Hansen. TOD-
Tree: Task-Overlapped Direct Send Tree Image Compositing for Hybrid MPI
Parallelism and GPUs. IEEE transactions on visualization and computer
graphics (TVCG), 23(6):1677–1690, 2016. → page 127

[86] S.-L. Guo, H.-X. Wang, Y.-B. Xue, C.-M. Li, and D.-S. Wang. Hierarchical
Cache Directory for CMP. Journal of Computer Science and Technology, 25
(2):246–256, 2010. → pages 80, 132

[87] A. Gutierrez, B. Beckmann, A. Dutu, J. Gross, J. Kalamatianos, O. Kayiran,
M. Lebeane, M. Poremba, B. Potter, S. Puthoor, M. D. Sinclair, M. Wyse,
J. Yin, X. Zhang, A. Jain, and T. G. Rogers. Lost in Abstraction: Pitfalls of
Analyzing GPUs at the Intermediate Language Level. In Proceedings of the
24th International Symposium on High Performance Computer Architecture
(HPCA), pages 141–155. IEEE, 2018. → page 92

[88] E. Hagersten and M. Koster. WildFire: A Scalable Path for SMPs. In
Proceedings of the 5th International Symposium on High Performance
Computer Architecture (HPCA), pages 172–181. IEEE, 1999. → pages
80, 132

[89] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg,
M. K. Prabhu, H. Wĳaya, C. Kozyrakis, and K. Olukotun. Transactional
Memory Coherence and Consistency. In Proceedings of the 31st Interna-
tional Symposium on Computer Architecture (ISCA). ACM, 2004. → pages
13, 14, 130, 133

[90] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam,
P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, a. gara, G. Chiu,
P. Boyle, N. Chist, and C. Kim. The IBM Blue Gene/Q Compute Chip. IEEE
Micro, 32(2):48–60, 2012. → page 47

151

[91] P. Harish and P. Narayanan. Accelerating Large Graph Algorithms on the GPU
Using CUDA. In International conference on high-performance computing
(HiPC), pages 197–208. Springer, 2007. → pages 2, 6, 74, 77

[92] M. Harris and L. Nyland. Inside Pascal: NVIDIA’s Newest Computing
Platform. NVIDIA GPU Technology Conference (GTC), 2016. → pages
21, 22

[93] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable Memory
Transactions. In Proceedings of the 10th Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 48–60. ACM, 2005. →
page 47

[94] B. A. Hechtman and D. J. Sorin. Exploring Memory Consistency for
Massively-Threaded Throughput-Oriented Processors. In Proceedings of
the 40th International Symposium on Computer Architecture (ISCA), pages
201–212. ACM, 2013. → pages 4, 20, 21, 22, 129

[95] B. A. Hechtman, S. Che, D. R. Hower, Y. Tian, B. M. Beckmann, M. D.
Hill, S. K. Reinhardt, and D. A. Wood. QuickRelease: A Throughput-
oriented Approach to Release Consistency on GPUs. In Proceedings of the
20th International Symposium on High Performance Computer Architecture
(HPCA), pages 189–200. IEEE, 2014. → pages 76, 79, 130, 132

[96] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support
for Lock-Free Data Structures. In Proceedings of the 20th International
Symposium on Computer Architecture (ISCA), pages 289–300. ACM, 1993.
→ pages 4, 46, 133

[97] T. H. Hetherington, M. O’Connor, and T. M. Aamodt. MemcachedGPU:
Scaling-up Scale-out Key-value Stores. In Proceedings of the 6th ACM
Symposium on Cloud Computing (SoCC), pages 43–57. ACM, 2015. → page
45

[98] D. R. Hower, B. A. Hechtman, B.M. Beckmann, B. R. Gaster, M. D. Hill, S. K.
Reinhardt, and D. A. Wood. Heterogeneous-Race-Free Memory Models. In
Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 427–440.
ACM, 2014. → pages 4, 5, 15, 75, 78, 81, 130, 137, 140

[99] W. M. Hsu. Segmented Ray Casting for Data Parallel Volume Rendering.
In Proceedings of the 1993 symposium on Parallel Rendering, pages 7–14.
IEEE, 1993. → page 105

152

[100] J. Huang. GTC Keynote Speech. https://www.youtube.com/watch?v=
Z2XlNfCtxwI, 2019. Accessed on 2020-07-08. → page 3

[101] S. Huang, S. Xiao, and W.-c. Feng. On the Energy Efficiency of Graphics
Processing Units for Scientific Computing. In International Symposium on
Parallel & Distributed Processing (IPDPS), pages 1–8. IEEE, 2009. → pages
2, 3

[102] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan.
WireGL: A Scalable Graphics System for Clusters. In Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), pages 129–140. ACM, 2001. → pages 104, 106, 134

[103] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and
J. T. Klosowski. Chromium: A Stream-Processing Framework for Interactive
Rendering on Clusters. ACM transactions on graphics (TOG), 21(3):693–702,
2002. → pages 103, 104, 106, 134

[104] IBM. Power ISA, Version 2.07B. http://kib.kiev.ua/x86docs/POWER/
PowerISA_V2.07B.pdf, 2015. Accessed on 2020-06-25. → pages 19, 21

[105] Inside HPC. TOP500 Shows Growing Momentum for Accelera-
tors. https://insidehpc.com/2015/11/top500-shows-growing-momentum-for-
accelerators/, 2015. Accessed on 2020-06-25. → page 74

[106] Intel. Intel Architecture Instruction Set Extensions Programming Reference:
Chapter 8: Intel Transactional Synchronization Extensions. Technical report,
2012. → page 47

[107] C. Jacobi, T. Slegel, and D. Greiner. Transactional Memory Architecture and
Implementation for IBM System Z. In Proceedings of the 45th International
Symposium on Microarchitecture (MICRO), pages 25–36. IEEE, 2012. →
page 47

[108] A. Jain, M. Khairy, and T. G. Rogers. A Quantitative Evaluation of Contempo-
rary GPU SimulationMethodology. Proceedings of the ACM onMeasurement
and Analysis of Computing Systems (SIGMETRICS), page 35, 2018. → page
91

[109] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: A Fast
and Accurate NoC Power and Area Model for Early-stage Design Space
Exploration. InDesign, Automation&Test in EuropeConference&Exhibition
(DATE), pages 423–428. IEEE, 2009. → page 38

153

https://www.youtube.com/watch?v=Z2XlNfCtxwI
https://www.youtube.com/watch?v=Z2XlNfCtxwI
http://kib.kiev.ua/x86docs/POWER/PowerISA_V2.07B.pdf
http://kib.kiev.ua/x86docs/POWER/PowerISA_V2.07B.pdf
https://insidehpc.com/2015/11/top500-shows-growing-momentum-for-accelerators/
https://insidehpc.com/2015/11/top500-shows-growing-momentum-for-accelerators/

[110] G. Kestor, V. Karakostas, O. S. Unsal, A. Cristal, I. Hur, and M. Valero.
RMS-TM: A Comprehensive Benchmark Suite for Transactional Memory
Systems. In Proceedings of the 2nd International Conference on Performance
engineering (ICPE), pages 335–346. ACM, 2011. → page 66

[111] M. Khairy, A. Jain, T. M. Aamodt, and T. G. Rogers. Exploring Modern
GPUMemory System Design Challenges through Accurate Modeling. CoRR,
abs/1810.07269, October 2018. URL http://arxiv.org/abs/1810.07269. →
page 91

[112] Khronos. The OpenCL Specification Version 2.2. https://www.khronos.
org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf, 2019. Accessed on
2020-07-03. → pages 2, 3, 9, 75, 78, 130

[113] J. Kim and C. Batten. Accelerating Irregular Algorithms on GPGPUs Using
Fine-Grain Hardware Worklists. In Proceedings of the 47th International
Symposium on Microarchitecture (MICRO), pages 75–87. IEEE, 2014. →
page 75

[114] Y. Kim, J.-E. Jo, H. Jang, M. Rhu, H. Kim, and J. Kim. GPUpd: A
Fast and Scalable Multi-GPU Architecture Using Cooperative Projection
and Distribution. In Proceedings of the 50th International Symposium
on Microarchitecture (MICRO), pages 574–586. ACM, 2017. → pages
5, 7, 12, 104, 107, 121, 133

[115] A. Kirsch, M. Mitzenmacher, and U. Wieder. More Robust Hashing: Cuckoo
Hashing with a Stash. SIAM Journal on Computing, 39(4):1543–1561, 2009.
→ pages 63, 70

[116] T. Knight. An Architecture for Mostly Functional Languages. In Proceedings
of the Conference on LISP and Functional Programming, pages 105–112.
ACM, 1986. → page 133

[117] K. Koukos, A. Ros, E. Hagersten, and S. Kaxiras. Building Heterogeneous
Unified Virtual Memories (UVMs) without the Overhead. ACM Transactions
on Architecture and Code Optimization (TACO), 13(1):1, 2016. → pages
78, 130

[118] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali. LoneStar: A Suite
of Parallel Irregular Programs. In International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 65–76. IEEE, 2009. →
pages 6, 77, 92

154

http://arxiv.org/abs/1810.07269
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf

[119] S. Kumar, A. Shriraman, and N. Vedula. Fusion: Design Tradeoffs in
Coherent Cache Hierarchies for Accelerators. In Proceedings of the 42nd
International Symposium on Computer Architecture (ISCA), pages 733–745.
ACM, 2015. → pages 25, 131, 139

[120] S. Laine and T. Karras. High-Performance Software Rasterization on GPUs.
In Proceedings of the SIGGRAPH Symposium on High Performance Graphics
(HPG), pages 79–88. ACM, 2011. → page 106

[121] S. Lam and L. Kleinrock. Packet Switching in a Multiaccess Broadcast
Channel: Dynamic Control Procedures. Transactions on Communications,
23(9):891–904, 1975. → page 61

[122] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM, 21:558, 1978. → pages 24, 25, 131

[123] L. Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. Transactions on Computers, (9):690–691,
1979. → pages 14, 19

[124] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J.
Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden. IBM POWER6
Microarchitecture. IBM Journal of Research and Development, 51(6):639–
662, 2007. → page 131

[125] E. A. Lee. The Problem with Threads. IEEE Computer, 39(5):33–42, 2006.
→ page 46

[126] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
Directory-Based Cache Coherence Protocol for the DASHMultiprocessor. In
Proceedings of the 17th International Symposium on Computer Architecture
(ISCA), pages 148–159. IEEE, 1990. → pages 80, 132

[127] A. Levinthal and T. Porter. Chap – A SIMD Graphics Processor. In
Proceedings of the 11th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH), pages 77–82. ACM, 1984. → pages
10, 61

[128] J. Lew, D. A. Shah, S. Pati, S. Cattell, M. Zhang, A. Sandhupatla, C. Ng,
N. Goli, M. D. Sinclair, T. G. Rogers, et al. Analyzing Machine Learning
Workloads Using a Detailed GPU Simulator. In International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 151–152.
IEEE, 2019. → page 91

155

[129] A. Li, G.-J. van den Braak, H. Corporaal, and A. Kumar. Fine-Grained
Synchronizations and Dataflow Programming on GPUs. In Proceedings of
the 29th International Conference on Supercomputing (ICS), pages 109–118.
ACM, 2015. → page 45

[130] D. Li and M. Becchi. Multiple Pairwise Sequence Alignments with the
Needleman-Wunsch Algorithm on GPU. In SC Companion: High Perfor-
mance Computing, Networking, Storage and Analysis (SCC), pages 1471–
1472. IEEE, 2012. → pages 77, 92

[131] C. Lin, V. Nagarajan, R. Gupta, and B. Rajaram. Efficient Sequential Con-
sistency via Conflict Ordering. In Proceedings of the 17th International
Conference on Architectural Support for Programming Language and Oper-
ating Systems (ASPLOS), pages 273–286. ACM, 2012. → pages 24, 130

[132] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. IEEE Micro, 28(2):39–55,
2008. → page 2

[133] H. Litz, D. Cheriton, A. Firoozshahian, O. Azizi, and J. P. Stevenson. SI-TM:
Reducing Transactional Memory Abort Rates Through Snapshot Isolation. In
Proceedings of the 19th International Conference on Architectural Support for
Programming Language and Operating Systems (ASPLOS), pages 383–398.
ACM, 2014. → page 133

[134] D. Luebke and G. Humphreys. How GPUs Work. Computer, 40(2):96–100,
2007. → page 102

[135] D. Lustig, S. Sahasrabuddhe, and O. Giroux. A Formal Analysis of the
NVIDIA PTX Memory Consistency Model. In Proceedings of the 24th Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 257–270. ACM, 2019. → pages
4, 5, 15, 75, 78, 80, 81, 130, 137, 140

[136] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. A Data Distributed,
Parallel Algorithm for Ray-Traced Volume Rendering. In Proceedings of
Parallel Rendering Symposium, pages 15–22. IEEE, 1993. → page 105

[137] J.Manson,W. Pugh, and S. V. Adve. The JavaMemoryModel. InProceedings
of the Annual Symposium on Principles of Programming Languages (POPL),
pages 378–391. ACM, 2005. → page 15

156

[138] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M.
Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A. Wood.
Timestamp Snooping: An Approach for Extending SMPs. In Proceedings of
the 9th International Conference on Architectural Support for Programming
Language and Operating Systems (ASPLOS), pages 25–36. ACM, 2000. →
page 131

[139] A. Meixner and D. J. Sorin. Dynamic Verification of Memory Consistency
in Cache-Coherent Multithreaded Computer Architectures. volume 6, pages
18–31. IEEE, 2008. → page 131

[140] M. Méndez-Lojo, M. Burtscher, and K. Pingali. A GPU Implementation of
Inclusion-based Points-to Analysis. In Proceedings of the 17th Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 107–116.
ACM, 2012. → page 45

[141] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard, Version 3.1. https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.
pdf, June 2015. Accessed on 2020-06-25. → page 100

[142] Mike Houston. Anatomy of AMD’s TeraScale Graphics Engine. http://attila.
ac.upc.edu/wiki/images/3/34/Houston-amd-terascale.pdf, 2008. Accessed
on 2020-06-25. → pages 2, 119

[143] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi, A. Jaleel,
A. Ramirez, and D. Nellans. Beyond the Socket: NUMA-aware GPUs.
In Proceedings of the 50th International Symposium on Microarchitecture
(MICRO), pages 123–135. ACM, 2017. → pages 4, 11, 75, 76, 92, 103

[144] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,
C. Kozyrakis, and K. Olukotun. An Effective Hybrid Transactional Memory
System with Strong Isolation Guarantees. In Proceedings of the 34th Inter-
national Symposium on Computer Architecture (ISCA), pages 69–80. ACM,
2007. → page 133

[145] L. Moll, A. Heirich, and M. Shand. Sepia: Scalable 3D Compositing Using
PCI Pamette. In Proceedings of the 7th International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 146–155. IEEE,
1999. → page 105

[146] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-Speed Rendering
Using Image Composition. In Proceedings of the 19th Annual Conference on

157

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://attila.ac.upc.edu/wiki/images/3/34/Houston-amd-terascale.pdf
http://attila.ac.upc.edu/wiki/images/3/34/Houston-amd-terascale.pdf

Computer Graphics and Interactive Techniques (SIGGRAPH), pages 231–240.
ACM, 1992. → page 134

[147] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting Classification of
Parallel Rendering. IEEE Computer Graphics and Applicationsi (CG&A), 14
(4):23–32, 1994. → page 106

[148] J. R. Monfort and M. Grossman. Scaling of 3D Game Engine Workloads
on Modern Multi-GPU Systems. In Proceedings of the Conference on High
Performance Graphics (HPG), pages 37–46. ACM, 2009. → page 106

[149] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM:
log-based transactional memory. In Proceedings of the 12th International
Symposium on High Performance Computer Architecture (HPCA), pages
254–265. IEEE, 2006. → pages 13, 14, 49, 50, 133

[150] N. Moscovici, N. Cohen, and E. Petrank. POSTER: A GPU-Friendly Skiplist
Algorithm. In Proceedings of the 22nd Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 449–450. ACM, 2017. → page 45

[151] V. Moya, C. Gonzalez, J. Roca, A. Fernandez, and R. Espasa. Shader
Performance Analysis on A Modern GPU Architecture. In Proceedings of
the 38th International Symposium on Microarchitecture (MICRO), pages
355–364. IEEE, 2005. → page 119

[152] C. Mueller. The Sort-First Rendering Architecture for High-Performance
Graphics. In Proceedings of the 1995 symposium on Interactive 3D graphics
(I3D), pages 75–84, 1995. → page 103

[153] D. Mulnix. Intel Xeon Processor Scalable Family Technical
Overview. https://software.intel.com/en-us/articles/intel-xeon-processor-
scalable-family-technical-overview, 2017. Accessed on 2020-06-25. →
pages 80, 132

[154] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0: A
Tool to Model Large Caches. Technical report, HP Laboratories, 2009. →
page 66

[155] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory
Consistency and Cache Coherence, Second Edition. Synthesis Lectures on
Computer Architecture, 15(1):1–294, 2020. → pages 14, 15, 80

158

https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview

[156] S. K. Nandy and R. Narayan. An Incessantly Coherent Cache Scheme for
Shared Memory Multithreaded Systems. MIT LCS CSG Memo 356. → page
131

[157] U. Neumann. Communication Costs for Parallel Volume-Rendering Algo-
rithms. IEEE Computer Graphics and Applicationsi (CG&A), 14(4):49–58,
1994. → page 105

[158] NVIDIA. GeForce Now: The Power to Play. https://www.nvidia.com/en-
us/geforce-now/, . Accessed on 2020-07-08. → page 3

[159] NVIDIA. NVIDIA Clara Parabricks. https://developer.nvidia.com/clara-
parabricks, . Accessed on 2020-07-08. → page 3

[160] NVIDIA. NVIDIA NVLink: High Speed GPU Interconnect. https://www.
nvidia.com/en-us/design-visualization/nvlink-bridges/. Accessed on 2020-
06-25. → pages 3, 4, 12, 75, 100, 103

[161] NVIDIA. NVIDIA RTX™ platform. https://developer.nvidia.com/rtx, .
Accessed on 2020-07-08. → page 3

[162] NVIDIA. NVIDIA NVSwitch: The World’s Highest-Bandwidth On-Node
Switch. https://images.nvidia.com/content/pdf/nvswitch-technical-overview.
pdf, . Accessed on 2020-06-25. → pages 3, 4, 75, 100, 103

[163] NVIDIA. NVIDIA TENSOR CORES: Unprecedented Acceleration for HPC
and AI. https://www.nvidia.com/en-us/data-center/tensor-cores/, . Accessed
on 2020-07-08. → page 3

[164] NVIDIA. NVIDIA Turing GPU Architecture Whitepaper. https://www.nvidia.
com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf, . Accessed on
2020-06-25. → pages 17, 120

[165] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi. https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_
Fermi_Compute_Architecture_Whitepaper.pdf, 2009. Accessed on 2020-06-
25. → pages 20, 21, 22, 32, 38, 66, 129

[166] NVIDIA. SLI Best Practices. http://developer.download.nvidia.com/
whitepapers/2011/SLI_Best_Practices_2011_Feb.pdf, 2011. Accessed on
2020-06-25. → pages 5, 7, 103, 106, 134

159

https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://developer.nvidia.com/clara-parabricks
https://developer.nvidia.com/clara-parabricks
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://developer.nvidia.com/rtx
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://developer.download.nvidia.com/whitepapers/2011/SLI_Best_Practices_2011_Feb.pdf
http://developer.download.nvidia.com/whitepapers/2011/SLI_Best_Practices_2011_Feb.pdf

[167] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Ke-
pler GK110. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/documents/NV-DS-Tesla-KCompute-Arch-May-2012-LR.pdf, 2012.
Accessed on 2020-06-25. → pages 20, 21, 22, 32, 129

[168] NVIDIA. Unified Memory in CUDA 6. https://devblogs.nvidia.com/unified-
memory-in-cuda-6/, Nov 2013. Accessed on 2020-06-25. → pages
3, 78, 88, 138

[169] NVIDIA. NVIDIA Geforce GTX 1080. http://international.download.nvidia.
com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_
FINAL.pdf, 2016. Accessed on 2020-06-25. → page 103

[170] NVIDIA. NVIDIA DGX-1: Essential Instrument for AI Research. https:
//www.nvidia.com/en-us/data-center/dgx-1/, 2017. Accessed on 2020-06-25.
→ pages 3, 75, 103, 109, 120, 141

[171] NVIDIA. NVIDIA Tesla V100 Architecture. http://images.nvidia.
com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf, Au-
gust 2017. Accessed on 2020-06-25. → page 130

[172] NVIDIA. NVIDIA Tesla V100 GPU Architecture Whitepaper.
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf, 2017. Accessed on 2020-06-25. → page 119

[173] NVIDIA. NVIDIADGX-2: Theworld’s most powerful AI system for themost
complex AI challenges. https://www.nvidia.com/en-us/data-center/dgx-2/,
2018. Accessed on 2020-06-25. → pages 3, 75, 103, 109, 120, 141

[174] NVIDIA. NVIDIA HGX-2: Powered by NVIDIA Tesla V100 GPUs and
NVSwitch. https://www.nvidia.com/en-us/data-center/hgx/, 2018. Accessed
on 2020-06-25. → pages 3, 75, 103

[175] NVIDIA. New GPU-Accelerated Weather Forecasting System Dramat-
ically Improves Accuracy. https://news.developer.nvidia.com/new-gpu-
accelerated-weather-forecasting-system-dramatically-improves-accuracy/,
2019. Accessed on 2020-07-08. → page 3

[176] NVIDIA. NVIDIA 2019 Annual Review. https://s22.q4cdn.com/364334381/
files/doc_financials/annual/2019/NVIDIA-2019-Annual-Report.pdf, 2019. Ac-
cessed on 2020-06-25. → page 103

160

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NV-DS-Tesla-KCompute-Arch-May-2012-LR.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NV-DS-Tesla-KCompute-Arch-May-2012-LR.pdf
https://devblogs.nvidia.com/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/unified-memory-in-cuda-6/
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/dgx-1/
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/hgx/
https://news.developer.nvidia.com/new-gpu-accelerated-weather-forecasting-system-dramatically-improves-accuracy/
https://news.developer.nvidia.com/new-gpu-accelerated-weather-forecasting-system-dramatically-improves-accuracy/
https://s22.q4cdn.com/364334381/files/doc_financials/annual/2019/NVIDIA-2019-Annual-Report.pdf
https://s22.q4cdn.com/364334381/files/doc_financials/annual/2019/NVIDIA-2019-Annual-Report.pdf

[177] NVIDIA. CUDA C++ Programming Guide Version 11.0. https://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html, 2020. Accessed on
2020-07-03. → pages 2, 9

[178] NVIDIA. NVIDIA DLSS 2.0: A Big Leap In AI Render-
ing. https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-
in-ai-rendering/, 2020. Accessed on 2020-07-08. → page 3

[179] L. E. Olson, M. D. Hill, and D. A. Wood. Crossing Guard: Mediating
Host-Accelerator Coherence Interactions. In Proceedings of the 22th Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 163–176. ACM, 2017. → page 132

[180] OpenSHMEM Project. OpenSHMEM Application Programming Inter-
face. http://www.openshmem.org/site/sites/default/site_files/OpenSHMEM-
1.4.pdf, December 2017. Accessed on 2020-06-25. → page 100

[181] S. Owens, S. Sarkar, and P. Sewell. A Better x86 Memory Model: x86-TSO.
In International Conference on Theorem Proving in Higher Order Logics
(TPHOL), pages 391–407. Springer, 2009. → pages 19, 21, 130

[182] R. Pagh and F. F. Rodler. Cuckoo hashing. In European Symposium on
Algorithms, pages 121–133. Springer, 2001. → page 63

[183] T. Peterka, D. Goodell, R. Ross, H.-W. Shen, and R. Thakur. A Configurable
Algorithm for Parallel Image-Compositing Applications. In Proceedings of
the Conference on High Performance Computing Networking, Storage and
Analysis, pages 1–10. IEEE, 2009. → page 105

[184] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kale, and K. Schulten. Scalable Molecular
Dynamics with NAMD. Journal of Computational Chemistry, 26(16):
1781–1802, 2005. → pages 77, 92

[185] F. Pong, A. Nowatzyk, G. Aybay, and M. Dubois. Verifying Distributed
Directory-Based Cache Coherence Protocols: S3.mp, a Case Study. In
European Conference on Parallel Processing, pages 287–300. Springer, 1995.
→ page 42

[186] T. Porter and T. Duff. Compositing Digital Images. In Proceedings of the
11th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), pages 253–259. ACM, 1984. → page 104

161

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
http://www.openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
http://www.openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf

[187] J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G. Tell, J. M.
Wilson, and C. T. Gray. A 0.54 pJ/b 20 Gb/s Ground-Referenced Single-
Ended Short-Reach Serial Link in 28 nm CMOS for Advanced Packaging
Applications. IEEE Journal of Solid-State Circuits (JSSC), 48(12):3206–3218,
2013. → pages 4, 75, 100, 103

[188] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill, S. K.
Reinhardt, and D. A. Wood. Heterogeneous System Coherence for Integrated
CPU-GPU Systems. In Proceedings of the 46th International Symposium on
Microarchitecture (MICRO), pages 457–467. ACM, 2013. → pages 20, 132

[189] S. H. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar, and R. Balasubra-
monian. Scalable and Reliable Communication for Hardware Transactional
Memory. In Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 144–154. IEEE,
2008. → page 133

[190] M. A. Raihan, N. Goli, and T. M. Aamodt. Modeling Deep Learning
Accelerator Enabled GPUs. In International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 79–92. IEEE, 2019. →
page 91

[191] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling Highly
ConcurrentMultithreaded Execution. InProceedings of the 34th International
Symposium on Microarchitecture (MICRO), pages 294–305. IEEE, 2001. →
page 133

[192] R. Rajwar and J. R. Goodman. Transactional Lock-free Execution of Lock-
Based Programs. In Proceedings of the 10th International Conference on
Architectural Support for Programming Language and Operating Systems
(ASPLOS), pages 5–17. ACM, 2002. → page 133

[193] G. Ramalingam. Context-Sensitive Synchronization-Sensitive Analysis is Un-
decidable. Transactions on Programming languages and Systems (TOPLAS),
22(2):416–430, 2000. → page 46

[194] P. Ranganathan, V. S. Pai, and S. V. Adve. Using Speculative Retirement
and Larger Instruction Windows to Narrow the Performance Gap Between
Memory Consistency Models. In Proceedings of the 9th Annual Symposium
on Parallel Algorithms and Architectures (SPAA), pages 199–210. ACM,
1997. → page 130

162

[195] X. Ren and M. Lis. Efficient Sequential Consistency in GPUs via Relativistic
Cache Coherence. In Proceedings of the 23rd International Symposium on
High Performance Computer Architecture (HPCA), pages 625–636. IEEE,
2017. → pages 76, 78, 133, 140

[196] X. Ren and M. Lis. High-Performance GPU Transactional Memory via Eager
Conflict Detection. In Proceedings of the 24th International Symposium on
High Performance Computer Architecture (HPCA), pages 235–246. IEEE,
2018. → page 14

[197] X. Ren, D. Lustig, E. Bolotin, A. Jaleel, O. Villa, and D. Nellans. HMG:
Extending Cache Coherence Protocols Across Modern Hierarchical Multi-
GPU Systems. In Proceedings of the 26th International Symposium on High
Performance Computer Architecture (HPCA), pages 582–595. IEEE, 2020.
→ page 103

[198] I. Rickards and E. Sørgård. Integrating CPU & GPU: the ARM methodology.
In Game Developers Conference (GDC), 2013. → page 21

[199] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B.
Kent, P. Jamieson, and J. Anderson. The VTR Project: Architecture and
CAD for FPGAs from Verilog to Routing. In Proceedings of the International
Symposium on Field Programmable Gate Arrays (FPGA), pages 77–86. ACM,
2012. → page 38

[200] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, B. Aditya, and
E. Witchel. TxLinux: Using and Managing Hardware Transactional Memory
in an Operating System. In Proceedings of 21st Symposium on Operating
Systems Principles (SOSP), pages 87–102. ACM, 2007. → page 47

[201] C. J. Rossbach, O. S. Hofmann, and E.Witchel. Is Transactional Programming
Actually Easier? In Proceedings of the 15th Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 47–56. ACM, 2010. →
page 47

[202] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural Support for
Software Transactional Memory. In Proceedings of the 39th International
Symposium on Microarchitecture (MICRO), pages 185–196. IEEE, 2006. →
page 133

[203] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam. Implementing
Signatures for TransactionalMemory. InProceedings of the 40th International

163

Symposium on Microarchitecture (MICRO), pages 123–133. IEEE, 2007. →
page 63

[204] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, 2010. → pages
4, 20

[205] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Understanding
POWER Multiprocessors. In Proceedings of the 32nd International Confer-
ence on Programming Language Design and Implementation (PLDI), pages
175–186. ACM, 2011. → pages 19, 21, 130

[206] J.-P. Schoellkopf. SRAMMemoryDevicewith FlashClear andCorresponding
Flash Clear Method, Feb. 19 2008. US Patent 7,333,380. → page 33

[207] M. Segal and K. Akeley. The OpenGL® Graphics System: A Specification
(Version 4.6 (Core Profile)). https://www.khronos.org/registry/OpenGL/
specs/gl/glspec46.core.pdf, 2019. Accessed on 2020-06-25. → page 17

[208] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, et al. Larrabee: A Many-Core
x86 Architecture for Visual Computing. Transactions on Graphics (TOG), 27
(3):1–15, 2008. → page 106

[209] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko,
Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, et al. RowClone: Fast and
Energy-Efficient in-DRAMBulk Data Copy and Initialization. In Proceedings
of the 46th International Symposium on Microarchitecture (MICRO), pages
185–197. ACM, 2013. → page 133

[210] Shara Tibken. CES 2019: Moore’s Law is dead, says Nvidia’s
CEO. https://www.cnet.com/news/moores-law-is-dead-nvidias-ceo-jensen-
huang-says-at-ces-2019/, 2019. Accessed on 2020-07-08. → page 1

[211] K. S. Shim, M. H. Cho, M. Lis, O. Khan, and S. Devadas. Library Cache
Coherence. Technical Report MIT-CSAIL-TR-2011-027, MIT, 2011. →
pages 25, 131

[212] A. Shriraman and S. Dwarkadas. Refereeing Conflicts in Hardware Trans-
actional Memory. In Proceedings of the 23rd International Conference on
Supercomputing (ICS), pages 136–146. ACM, 2009. → page 133

164

https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.cnet.com/news/moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces-2019/
https://www.cnet.com/news/moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces-2019/

[213] A. Shriraman, M. F. Spear, H. Hossain, V. J. Marathe, S. Dwarkadas, andM. L.
Scott. An Integrated Hardware-Software Approach to Flexible Transactional
Memory. In Proceedings of the 34th International Symposium on Computer
Architecture (ISCA), pages 104–115. ACM, 2007. → page 133

[214] A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible Decoupled Transac-
tional Memory Support. In Proceedings of the 35th International Symposium
on Computer Architecture (ISCA), pages 139–150. IEEE, 2008. → page 133

[215] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR, abs/1409.1556, September 2014.
URL http://arxiv.org/abs/1409.1556. → page 74

[216] M. D. Sinclair, J. Alsop, and S. V. Adve. Efficient GPU Synchronization
Without Scopes: Saying No to Complex Consistency Models. In Proceedings
of the 48th International Symposium on Microarchitecture (MICRO), pages
647–659. ACM, 2015. → pages 74, 75, 76, 78, 81, 130, 133, 140

[217] M. D. Sinclair, J. Alsop, and S. V. Adve. HeteroSync: A Benchmark Suite for
Fine-Grained Synchronization on Tightly Coupled GPUs. In International
Symposium on Workload Characterization (IISWC), pages 239–249. IEEE,
2017. → pages 75, 91

[218] P. S. Sindhu, J.-M. Frailong, and M. Cekleov. Scalable Shared Memory
Multiprocessors, chapter Formal Specification of Memory Models, page 25.
Springer, 1992. → pages 19, 21

[219] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi.
End-to-end Sequential Consistency. In Proceedings of the 39th International
Symposium on Computer Architecture (ISCA), pages 524–535. IEEE, 2012.
→ page 130

[220] A. Singh, S. Aga, and S. Narayanasamy. Efficiently Enforcing Strong Memory
Ordering in GPUs. In Proceedings of the 48th International Symposium
on Microarchitecture (MICRO), pages 699–712. ACM, 2015. → pages
19, 20, 21, 22, 36, 37, 38, 129

[221] I. Singh, A. Shriraman, W. W. Fung, M. O’Connor, and T. M.
Aamodt. Cache Coherence for GPU Architectures. In Proceed-
ings of the 19th International Symposium on High Performance Com-
puter Architecture (HPCA), pages 578–590. IEEE, 2013. → pages
4, 6, 19, 20, 22, 23, 25, 32, 37, 38, 74, 75, 76, 79, 81, 82, 129, 131, 132, 133

165

http://arxiv.org/abs/1409.1556

[222] P. Singh, C.-R. M, P. Raghavendra, A. Nandi, D. Das, and T. Tye. AMD
Platform Coherency and SoC Verification Challenges. In Proceedings of the
4th ACM Symposium on Cloud Computing (SoCC). ACM, 2013. → page 21

[223] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner.
POWER5 System Microarchitecture. IBM journal of research and develop-
ment, 49(4.5):505–521, 2005. → page 131

[224] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory Consistency
and Cache Coherence. Synthesis Lectures on Computer Architecture, 6(3):
1–212, 2011. → pages 14, 15, 80

[225] SPARC International. The SPARC Architecture Manual, Version 9. https:
//cr.yp.to/2005-590/sparcv9.pdf, 1994. Accessed on 2020-06-25. → pages
41, 130

[226] D. Steinkraus, I. Buck, and P. Simard. Using GPUs for Machine Learning
Algorithms. In 8th International Conference on Document Analysis and
Recognition (ICDAR), pages 1115–1120. IEEE, 2005. → page 2

[227] G. Stoll, M. Eldridge, D. Patterson, A.Webb, S. Berman, R. Levy, C. Caywood,
M. Taveira, S. Hunt, and P. Hanrahan. Lightning-2: A High-Performance
Display Subsystem for PC Clusters. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH),
pages 141–148. ACM, 2001. → page 105

[228] J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek. Multiple reservations
and the Oklahoma update. Parallel & Distributed Technology: Systems &
Applications, 1(4):58–71, 1993. → pages 46, 133

[229] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway, Y. Bao,
S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K. Ziabari, Z. Chen,
R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and D. Kaeli. MGPUSim: Enabling
Multi-GPU Performance Modeling and Optimization. In Proceedings of
the 46th International Symposium on Computer Architecture (ISCA), pages
197–209. ACM, 2019. → page 91

[230] SUN Microsystems. SPARC Architecture Manual V8. https://gaisler.com/
doc/sparcv8.pdf, 1990. Accessed on 2020-06-25. → pages 19, 21

[231] R. N. Taylor. Complexity of Analyzing the Synchronization Structure of
Concurrent Programs. Acta Informatica, 19(1):57–84, 1983. → page 46

166

https://cr.yp.to/2005-590/sparcv9.pdf
https://cr.yp.to/2005-590/sparcv9.pdf
https://gaisler.com/doc/sparcv8.pdf
https://gaisler.com/doc/sparcv8.pdf

[232] T. N. Theis and H.-S. P. Wong. The End of Moore’s Law: A New Beginning
for Information Technology. Computing in Science & Engineering, 19(2):
41–50, 2017. → page 1

[233] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal, T. Har-
ris, and M. Valero. EazyHTM: EAger-LaZY hardware Transactional Memory.
In Proceedings of the 42nd International Symposium on Microarchitecture
(MICRO), pages 145–155. ACM, 2009. → pages 50, 133

[234] A. Villegas, Á. Navarro, R. Asenjo Plaza, O. Plata, R. Ubal, and D. Kaeli.
Hardware Support for Local Memory Transactions on GPU Architectures. In
TRANSACT, 2015. → pages 48, 133

[235] V. Vineet and P. Narayanan. CUDA Cuts: Fast Graph Cuts on the GPU. In
Proceedings of the Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 1–8. IEEE, 2008. → page 66

[236] M. M. Waliullah and P. Stenstrom. Starvation-Free Transactional Memory-
System Protocols. In European Conference on Parallel Processing (ECPP),
pages 280–291. Springer, 2007. → page 133

[237] D. A. Wallach. PHD: A Hierarchical Cache Coherent Protocol. PhD thesis,
Massachusetts Institute of Technology, 1992. → page 132

[238] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Mechanisms for
Store-Wait-Free Multiprocessors. In Proceedings of the 34th International
Symposium on Computer Architecture (ISCA), pages 266–277. ACM, 2007.
→ page 130

[239] A. W. Wilson Jr. Hierarchical Cache/Bus Architecture for Shared Memory
Multiprocessors. In Proceedings of the 14th International Symposium on
Computer Architecture (ISCA), pages 244–252. ACM, 1987. → page 132

[240] M. Wimmer and P. Wonka. Rendering Time Estimation for Real-Time
Rendering. In Eurographics Symposium on Rendering, pages 118–129, 2003.
→ page 115

[241] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos.
Demystifying GPU Microarchitecture through Microbenchmarking. In Pro-
ceedings of the International Symposium on Performance Analysis of Systems
& Software (ISPASS), pages 235–246. IEEE, 2010. → pages 30, 37, 38, 66

167

[242] D. A. Wood, G. A. Gibson, and R. H. Katz. Verifying a Multiprocessor
Cache Controller Using Random Test Generation. IEEE Design & Test of
Computers, 7(4):13–25, 1990. → page 42

[243] S. Xiao and W.-c. Feng. Inter-Block GPU Communication via Fast Barrier
Synchronization. In International Symposium on Parallel & Distributed
Processing (IPDPS), pages 1–12. IEEE, 2010. → pages 36, 38

[244] C. Xie, S. L. Song, J. Wang, W. Zhang, and X. Fu. Processing-in-Memory
Enabled Graphics Processors for 3D Rendering. In Proceedings of the
23rd International Symposium on High Performance Computer Architecture
(HPCA), pages 637–648. IEEE, 2017. → pages 120, 135

[245] C. Xie, X. Fu, and S. Song. Perception-Oriented 3DRenderingApproximation
for Modern Graphics Processors. In Proceedings of the 24th International
Symposium on High Performance Computer Architecture (HPCA), pages
362–374. IEEE, 2018. → page 120

[246] C. Xie, F. Xin, M. Chen, and S. L. Song. OO-VR: NUMA Friendly Object-
Oriented VR Rendering Framework for Future NUMA-Based Multi-GPU
Systems. In Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), pages 53–65. IEEE, 2019. → pages 12, 115, 120, 133

[247] C. Xie, X. Zhang, A. Li, X. Fu, and S. Song. PIM-VR: Erasing Motion
Anomalies In Highly-Interactive Virtual Reality World With Customized
Memory Cube. In Proceedings of the 25th International Symposium on High
Performance Computer Architecture (HPCA), pages 609–622. IEEE, 2019.
→ page 120

[248] Y. Xu, R. Wang, N. Goswami, T. Li, L. Gao, and D. Qian. Software
Transactional Memory for GPU Architectures. In Proceedings of Annual
International Symposium on Code Generation and Optimization (CGO),
pages 1–10. ACM, 2014. → page 133

[249] Y. Xu, L. Gao, R. Wang, Z. Luan, W. Wu, and D. Qian. Lock-based
Synchronization for GPU Architectures. In Proceedings of the International
Conference on Computing Frontiers (CF), pages 205–213. ACM, 2016. →
page 45

[250] Y. Yao, G. Wang, Z. Ge, T. Mitra, W. Chen, and N. Zhang. Efficient
Timestamp-Based Cache Coherence Protocol for Many-Core Architectures.
In Proceedings of the 30th International Conference on Supercomputing
(ICS), pages 1–13. ACM, 2016. → page 131

168

[251] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro,
16:28, Apr 1996. → page 19

[252] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M.
Swift, and D. A. Wood. LogTM-SE: Decoupling Hardware Transactional
Memory from Caches. In Proceedings of the 13th International Symposium
on High Performance Computer Architecture (HPCA), pages 261–272. IEEE,
2007. → pages 13, 14, 49, 133

[253] V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans, andO.Villa. Combin-
ing HW/SWMechanisms to Improve NUMA Performance of Multi-GPU Sys-
tems. In Proceedings of the 51th International Symposium on Microarchitec-
ture (MICRO), pages 339–351. IEEE, 2018.→ pages 4, 12, 74, 75, 76, 95, 103

[254] H. Yu, C. Wang, and K.-L. Ma. Massively Parallel Volume Rendering
Using 2–3 Swap Image Compositing. In Proceedings of the conference on
Supercomputing (SC), pages 1–11. IEEE, 2008. → page 105

[255] X. Yu and S. Devadas. TARDIS: Time Travelling Coherence Algorithm
for Distributed Shared Memory. In Proceedings of the 24th International
Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 227–240. IEEE, 2015. → pages 24, 25, 30, 35, 131, 138

[256] X. Yu, M. Vĳayaraghavan, and S. Devadas. A proof of correctness for
the tardis cache coherence protocol. CoRR, abs/1505.06459, 2015. URL
http://arxiv.org/abs/1505.06459. → page 28

[257] X. Yu, H. Liu, E. Zou, and S. Devadas. Tardis 2.0: Optimized Time
Traveling Coherence for Relaxed Consistency Models. In Proceedings of
the 25th International Conference on Parallel Architecture and Compilation
Techniques (PACT), pages 261–274. IEEE, 2016.→ pages 25, 36, 37, 132, 138

[258] R. J. Zerr and R. S. Baker. SNAP: SN (discrete ordinates) Application Proxy
Description. Los Alamos National Laboratories, Tech. Rep. LAUR-13-21070,
2013. → pages 6, 77, 92

[259] F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguadé, T. Harris, and
M. Valero. Atomic Quake: Using Transactional Memory in an Interactive
MultiplayerGame Server. InProceedings of the 14th Symposium onPrinciples
and Practice of Parallel Programming (PPoPP), pages 25–34. ACM, 2009.
→ page 47

169

http://arxiv.org/abs/1505.06459

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgments
	1 Introduction
	1.1 The Extensive Usage of the GPU Platform
	1.2 Challenges of GPU Synchronization
	1.3 Thesis Statement
	1.4 Contributions
	1.5 Organization

	2 Background
	2.1 GPU Architectures
	2.1.1 High-level Architecture and Programming Model
	2.1.2 Hierarchical Multi-Module and Multi-GPU Systems

	2.2 Synchronization
	2.2.1 Locks
	2.2.2 Transactional Memory

	2.3 Memory Consistency Model
	2.4 Cache Coherence Protocol
	2.5 Graphics Processing
	2.5.1 The 3D Rendering Pipeline
	2.5.2 The Graphics GPU Architecture

	3 Efficient Sequential Consistency via Relativistic Cache Coherence
	3.1 GPUs vs. CPUs: A Consistency and Coherence Perspective
	3.2 Bottlenecks of Enforcing Sequential Consistency
	3.3 Enforcing Sequential Consistency in Logical Time
	3.4 Relativistic Cache Coherence (RCC)
	3.4.1 Logical Clocks, Versions, and Leases
	3.4.2 Example Walkthrough
	3.4.3 Coherence Protocol: States and Transitions
	3.4.4 L2 Evictions and Timestamp Rollover
	3.4.5 Lease Time Extension, and Prediction
	3.4.6 RCC-WO: A Weakly Ordered Variant

	3.5 Methodology
	3.6 Evaluation Results
	3.6.1 Performance Analysis
	3.6.2 Energy Cost and Traffic Load
	3.6.3 Coherence Protocol Complexity
	3.6.4 Area Cost

	3.7 Summary

	4 Hardware Transactional Memory with Eager Conflict Detection
	4.1 GPU Transactional Memory
	4.2 Eager Conflict Detection and GPUs
	4.3 GPUs Favour Eager Conflict Detection
	4.4 GETM Transactional Memory
	4.4.1 Atomicity, Consistency, and Isolation
	4.4.2 Walkthrough Example

	4.5 GETM Implementation Details
	4.5.1 SIMT Core Extensions
	4.5.2 Validation Unit
	4.5.3 Commit-Time Coalescing

	4.6 Methodology
	4.7 Evaluation Results
	4.7.1 Performance Analysis
	4.7.2 Sensitivity Analysis
	4.7.3 Transaction Abort Rates
	4.7.4 Scalability
	4.7.5 Area and Power Cost

	4.8 Summary

	5 Cache Coherence Protocol for Hierarchical Multi-GPU Systems
	5.1 Emerging Programs Need Fine-Grained Communication
	5.2 GPU Weak Memory Model
	5.3 Existing GPU Cache Coherence
	5.4 The Novel Coherence Needs of Modern Multi-GPU Systems
	5.4.1 Extending Coherence to Multiple GPUs
	5.4.2 Leveraging GPU Weak Memory Models

	5.5 Baseline Non-Hierarchical Cache Coherence
	5.5.1 Architectural Overview
	5.5.2 Coherence Protocol Flows in Detail

	5.6 Hierarchical Multi-GPU Cache Coherence
	5.6.1 Architectural Overview
	5.6.2 Coherence Protocol Flows in Detail

	5.7 Methodology
	5.8 Evaluation Results
	5.8.1 Performance Analysis
	5.8.2 Sensitivity Analysis
	5.8.3 Hardware Costs
	5.8.4 Discussion

	5.9 Summary

	6 Scalable Multi-GPU Rendering via Parallel Image Composition
	6.1 Parallel Image Composition
	6.2 Limits of Existing Solutions
	6.3 CHOPIN: Leveraging Parallel Image Composition
	6.4 The CHOPIN Architecture
	6.4.1 Software Extensions
	6.4.2 Hardware Extensions
	6.4.3 Composition Workflow
	6.4.4 Draw Command Scheduler
	6.4.5 Image Composition Scheduler

	6.5 Methodology
	6.6 Evaluation Results
	6.6.1 Performance Analysis
	6.6.2 Composition Traffic Load
	6.6.3 Sensitivity Analysis
	6.6.4 Hardware Costs
	6.6.5 Discussion

	6.7 Summary

	7 Related Work
	7.1 Work Related to Memory Consistency Enforcement
	7.2 Work Related to Cache Coherence Protocol
	7.3 Work Related to Transactional Memory
	7.4 Work Related to Graphics Processing

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Directions of Future Work
	8.2.1 Logical-Time Cache Coherence in Heterogeneous Systems
	8.2.2 Reducing Transaction Abort Rates of GETM
	8.2.3 Scoped Memory Model vs. Easy Programming
	8.2.4 Scaling CHOPIN to Larger Systems

	Bibliography

