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Abstract—The success of DNN pruning has led to the devel-
opment of energy-efficient inference accelerators that support
pruned models with sparse weight and activation tensors. Because
the memory layouts and dataflows in these architectures are
optimized for the access patterns during inference, however, they
do not efficiently support the emerging sparse training techniques.

In this paper, we demonstrate (a) that accelerating sparse
training requires a co-design approach where algorithms are
adapted to suit the constraints of hardware, and (b) that
hardware for sparse DNN training must tackle constraints that
do not arise in inference accelerators. As proof of concept, we
adapt a sparse training algorithm to be amenable to hardware
acceleration; we then develop dataflow, data layout, and load-
balancing techniques to accelerate it.

The resulting system is a sparse DNN training accelerator
that produces pruned models with the same accuracy as dense
models without first training, then pruning, and finally retraining,
a dense model. Compared to training the equivalent unpruned
models using a state-of-the-art DNN accelerator without sparse
training support, Procrustes consumes up to 3.26× less energy
and offers up to 4× speedup across a range of models, while
pruning weights by an order of magnitude and maintaining
unpruned accuracy.

I. Introduction
Deep neural networks are known to be vastly overparameterized:
pruning techniques can typically reduce the weight count by an
order of magnitude [14, 15, 16, 25, 28, 29, 43, etc.]. This sparsity
comes at the cost of irregular memory accesses and computation
patterns, and several accelerators have been proposed to enable
efficient inference on sparse models [7, 11, 13, 36, 50, etc.].

None of these approaches were, however, designed for energy-
efficient training. This is because they target a context where
pruning occurs after training: a model is first trained with
the full parameter set, then pruned, and finally re-trained to
recover accuracy [15]. While this saves energy at inference
time, training the pruned network takes more time and energy
than training an equivalent dense network to the same accuracy.
Skipping the pre-training step is not an option: even if oracular
knowledge of the pruned model connectivity is assumed,
training the pruned model from scratch sacrifices accuracy
compared to the original network [15, 28].
Still, the very existence of pruned networks suggests that

it must be possible to somehow train them. Recent work has
demonstrated that a model pruned by an order of magnitude
can be trained provided that the initialization for the unpruned
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Fig. 1: Potential training energy savings and speedup from
ideally leveraging all weight sparsity (here, 5×) while training
VGG-S (15M weights) to convergence with Dropback [10].
fw/bw/wu = forward/backward/weight-update phases.

subset of weights is preserved [8]; this can be achieved
either by dynamically selecting the most productive gradient
subspace [10] or by iteratively increasing sparsity [33, 49].

Ideally, such sparse-from-scratch training can offer significant
savings. Figure 1 shows this for VGG-S [46] pruned 5×
(15M→3M weights) using the Dropback algorithm [10], in
an idealized 16×16 PEs training system where (i) sparsity is
evenly distributed within each layer so all PEs receive the same
workload (i.e., perfect load balancing), and (ii) sparse weights
are stored in an idealized compressed format with no overhead,
and (iii) retained weights selection is instant and cost-free (see
Section VI-A for setup details). While the exact improvement
varies with the geometry and sparsity of each layer, leveraging
5× sparsity can yield up to 2.6× speedup with 2.3× less energy
consumption over the entire network.
In practice, however, none of the existing sparse training

methods can reach this potential. Most [8, 10, 49] require
sorting all weights to determine the parameters to retain; with
weight counts in the tens of millions, sorting is an expensive
proposition. Several [33, 49] achieve only small pruning factors
and suffer accuracy loss. Some [8, 49] prune the model very
gradually; this implies (i) no peak memory footprint reduction,
(ii) mediocre energy savings because the average sparsity is
low during most of the training process, and (iii) the need
to support two weight storage formats (dense and sparse)
and switch formats mid-way during training. The remaining
technique [10] maintains the target weight sparsity throughout
training, but gives up computation sparsity — a significant
drawback for training, where weights are usually 32-bit floating-
point numbers that are energetically expensive to multiply.

In addition, existing accelerators that support sparse inference
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Fig. 2: CNN training consists of (a) the forward pass, (b) the backward pass, and (c) the weight update pass; minibatch size
adds a fourth dimension to the activations. Weights are accessed in different order during the forward and backward passes.
Training fc layers is similar but uses multiplication instead of convolution and ,> instead of ,þ in the backward pass. L =
loss; G = iacts; H = oacts; , = weights; þ = 180° filter-wise rotation.

are inadequate for sparse training. Weights are represented
in formats that directly correspond to the dataflow being
used [7, 11, 13, 36, 50, etc.]; this works well when weights
are always accessed in the same order during inference, but
does not support the different weight access patterns that arise
in different phases of training (see Section II-A). Accelerators
that perform load balancing (e.g., Sparten [11]) do this in
software as a preprocessing step; this works for inference where
weight sparsity is static, but not for training where weight
sparsity changes dynamically. Finally, recent proposals like
SCNN [36] and Sparten [11] use complex hardware to exploit
two-sided sparsity (i.e., both weight and activation sparsity);
this can be leveraged during the forward-pass phase of training,
but usually does not exist in the backpropagation or weight
update phases because the ubiquitous batch normalization
destroys layer sparsity in the back-propagated gradient mL

mH
,

so the additional hardware costs are not warranted for training.
(We describe these challenges in more detail in Section II.)

In this paper, we tackle the challenges of accelerating sparse
training by combining algorithmic adaptation with dataflow
and hardware optimizations. The accelerator architecture we
propose, Procrustes, relies on four key insights:
1) Two-sided sparsity can only be leveraged in the forward

pass, but increases interconnect complexity [7, 36, etc.].
Procrustes therefore exploits one source of sparsity in each
training phase: weight sparsity in the forward and back-
ward passes, and activation sparsity in the weight update
phase. This maximizes energy and latency improvements
while minimizing hardware complexity.

2) While load-balancing a sparse workload across a 2D
PE array can destroy spatial reuse, spatial reuse gen-
erally arises in only one hardware dimension (either
row or column broadcast). Procrustes uses dataflows that
distribute the non-sparse minibatch dimension (always
available during training) across one hardware dimension
and the sparse tensor dimension(s) across the other
hardware dimension, load-balancing the workload across
the minibatch dimension. This achieves good utilization
and preserves spatial reuse without a complex interconnect.

3) While sparse training approaches generally rely on sorting
to determine which weights to keep, it actually suffices
to partition the weight set into two sets (retained and dis-
carded). Procrustes replaces the sorting with a partitioning

scheme based on dynamic quantile estimation [45], which
avoids the computation and storage overheads of sorting.

4) Weight initialization values are only important during
early phases of training and quickly outweighed by
the accumulated gradients. Therefore, in sparse training
algorithms where retained initial weight components
prevent computation sparsity [10], the initial weights can
be decayed to zero early in the training process.

In the remainder of the paper, we first show how to adapt an
existing sparse training algorithm [10] to make it suitable for
hardware accelerator implementation; the adapted algorithm
achieves 3.9×–11.7× sparsity while maintaining unpruned
accuracy on tasks like CIFAR10 and ImageNet.
We then propose a hardware architecture that adapts a

standard 2D-PE-array inference accelerator to enable sparse
training without incurring the dataflow limitations and inter-
connect complexity of the only prior sparse training accelerator
proposal [49] and achieves much higher sparsity. Finally, we
develop a sparse data representation suitable for training access
patterns, and an inexpensive load-balancing technique that
preserves maximum spatio-temporal reuse without complicating
the on-chip interconnect. Most of the modifications are not
specific to the sparse training method we adapt, but rather are
necessary for accelerating any existing sparse training approach.

Compared to an equivalent accelerator that does not support
training-time sparsity, Procrustes uses 2.27×–3.26× less energy
and offers 2.28×–4× speedup without compromising accuracy
on state-of-the art networks on ImageNet and CIFAR-10.

II. Sparse training considerations

A. DNN training
Stochastic gradient descent (SGD) — the de facto standard
training algorithm for deep neural networks [26] — comprises
three stages, illustrated in Figure 2:
1) The forward pass runs the inference algorithm to de-

termine the model’s predictions for training inputs and
calculate the loss L (i.e., the training error). For a
convolutional layer, this consists of convolving the input
activation (iact) tensor G with a set of filters F to obtain
the output activation (oact) tensor H (Figure 2a).

2) The backward pass back-propagates the loss gradient
across the model’s layers. For a convolutional layer, this
is done by convolving the loss gradient with respect to
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for = ∈ [0, #) do ⊲ minibatch
for A ∈ [0, ') do ⊲ filter x-dim

for B ∈ [0, () do ⊲ filter y-dim
for ? ∈ [0, %) do ⊲ oacts x-dim

for @ ∈ [0, &) do ⊲ oacts y-dim
for 2 ∈ [0, �) do ⊲ in channel

for : ∈ [0,  ) do ⊲ out channel
H[?, @, :, =] += F [A, B, :, 2]

× G [?+A, @+B, 2, =]

Alg. 1: The computation of a conv layer forward pass.

the oacts mL
mH

with filters F; unlike in the forward pass,
however, each filter is first rotated 180° (Figure 2b).

3) The weight update pass determines how much a weight
F should be adjusted to decrease the loss by computing
the gradient mL

mF
. For a convolutional layer, this consists

of convolving the backpropagated loss gradient with
respect to the oacts mL

mH
with the input activations (iacts)

G (Figure 2c).
In fully connected layers, G and H are 1D vectors, a weight
matrix replaces the weight filters, inner product replaces
convolution, and matrix transpose replaces the 180° rotation.

B. Sources of sparsity
Inference accelerators that support sparsity [7, 11, 13, 36, 50,
etc.] can leverage two sparsity sources: (a) zero-valued weights
that result from pruning [15], and (b) zero-valued activations
that result from the relu activation function [2]. With suitable
hardware support, multiply-accumulate (MAC) operations that
involve zero weights or activations can be skipped, while zero-
valued weights and activations need not be stored if a suitable
sparse data format is used; some accelerators can take advantage
of both sparsity sources simultaneously [7, 11, 36].
During training, weight sparsity can also be used in the

backward gradient propagation phase, and input activation
sparsity in the weight update phase (cf. Figure 2). However,
the back-propagated gradient mL

mH
does not exhibit sparsity

because of the prevalent use of batch normalization [20]: batch
normalization layers are commonly used between conv and
relu layers, which means that the mL

mH
sparsity generated from

backpropagating through relu is destroyed by backpropagating
through the batch normalization layer.

Designers of sparse training accelerators, therefore, are faced
with a choice: either spend additional hardware to accelerate
one third of the training process, or reduce hardware complexity
but give up on leveraging activation sparsity in the forward
pass. In this paper, we focus on the latter approach.

C. Mappings, dataflows, and load balancing
Algorithm 1 illustrates the operations required to evaluate a
conv layer (the forward pass is shown but the backward and
weight update passes can be expressed in the same way, with
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Fig. 4: DNN computation on a 2D PE array with a weight-
stationary �,  mapping: (a) dense model, equal work and
spatial reuse; (b) sparse model, unequal work but spatial
iact/psum reuse; (c) sparse model, equal work but no spatial
iact/psum reuse. = work tile; = overhead due to lack of
reuse / complex interconnect. Each column is a full PE array’s
worth of work; a single layer’s computation comprises many
of these. ±bcast = with/without spatial weight reuse.

only the innermost MAC operation different). The computation
can be represented as a seven-dimensional nested loop, where
each loop traverses a different dimension of the operation
space [35] (single-sample inference accelerators may not have
the # minibatch dimension). Regions of this operation space
are then distributed as “work tiles” to different PEs by mapping
two of the loops to the horizontal and vertical dimensions of
a 2D PE array; together with exchanging the order in which
loops are nested, this determines the dataflow [24, 35].

Figure 3 shows the ubiquitous weight-stationary dataflow [3,
6, 22, 34, 39, 40, 41, 48, etc.], which results from mapping the
�,  dimensions across the PE array in the forward pass
(mapping ', ( is less common due to small filter sizes); the
corresponding mappings for the backward and weight-update
passes are shown in the adjacent table.
In this mapping, each workload (e.g., DNN layer) is first

divided into PE-sized work tiles, all of which have the same
number of weights. The tiles are mapped among the PEs; once
PE receives one work-tile, the computation begins and runs
until all work-tiles have finished. Finally, the next set of work-
tiles is distributed among the PEs, and the process repeats until
the entire layer has been evaluated (Figure 4a).

This mapping results in advantageous dataflow properties in
a 2D PE array. Because all work tiles have the same amount
of work, execution is naturally synchronized, and data can
be spatially reused by broadcasting across multiple PEs. For
example, in the forward pass in Figure 3, input activations are
broadcast horizontally (read-only reuse), while partial sums are
reduced vertically (read-write reuse). The dataflow patterns also
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Fig. 5: Load imbalance histogram of full-PE-array working
sets (columns in Figure 4b) when training VGG-S [46]/CIFAR-
10 [23] using Dropback sparse training [10]. A perfectly
load-balanced workload would have 100% of the sets at 0%
overhead.

allow the on-chip network to be simple: our example requires
two one-dimensional flows (for the activations and the partial
sums) and one unicast flow (for the weights); typically, those
would be three separate interconnects.

However, difficulties arise when the network is sparse.
At reasonable pruning levels, on the order of 10% of the
weights survive [15], with sparsity distributed unevenly among
the worktiles (by chance and learning pressure). This leaves
designers with two unpleasant alternatives:
1) Retain the same tiling and mapping of operations to the

PE array as in the dense case. This preserves the single-
dimensional dataflow patterns shown in Figure 3, allowing
input activations and partial sums to be spatially reused.
However, different amounts of work are distributed to
different PEs, and utilization is low because latency is
limited by the “slowest” PE (Figure 4b). Figure 5 shows
how latency differs among full-PE-array sets of work tiles
(i.e., columns in Figure 4b): frequently, the load imbalance
causes execution time overheads in excess of 50%, and
sometimes in excess of 100%.

2) Distribute an equal number of non-zero weights to each
PEs. This balances the workload among the PEs (Fig-
ure 4b), but destroys the desirable single-dimensional on-
chip traffic flow patterns of Figure 3 and severely reduces
the benefits from spatial reuse. In addition, because related
partial sums can be generated in any PE, a complex
interconnect is required to reduce them [7, 49].

Choosing other dataflows also does not provide a panacea:
for example, the activation-stationary dataflow used for some
sparse accelerators [36] suffers similar issues in the weight
update pass, requires two datatypes to be unicast, and suffers
from low PE array utilization towards the tail of many networks
where the activation tensors are small [7].

Section IV-C describes how Procrustes employs the addi-
tional minibatch dimension available during training to achieve
effective load balancing while preserving a hardware-friendly
dataflow and avoiding the need for a complex interconnect.

D. Sparse weight representation
Existing sparse-weight inference accelerators [7, 11, 13, 36, 50]
employ a linear run-length encoding that is tightly coupled to

the dataflow they use. For example, EIE [13] stores non-zero
entries as an interleaved compressed sparse column (CSC)
format, which permits a single column of an fc layer weight
matrix , to be streamed to the PE array to interact with the
same input activations. This layout matches the dataflow during
the forward pass, but makes it impossible to calculate addresses
within a column of ,> in the backward pass.

Similarly, the compressed format used for conv filters in
SCNN [36] organizes filter layers so that all sparse filters
with the same input channel (and different output channels) are
adjacent. In the forward pass, this corresponds to SCNN’s input-
stationary dataflow where a single input activation is multiplied
by all filters from the same input channel and the partial
sums are distributed to different output channels; however, in
the backward pass the equivalent gradient-stationary dataflow
would need to compute addresses for all filters from one output
channel, which is not possible due to varying filter sparsity.

Procrustes instead uses a variant compressed block format [5]
(Section IV-B) to ensure that weights can be compressed but
still read efficiently during all relevant training phases.

E. Sparse training algorithms
Training of sparse networks relies on the observation that
dense deep neural networks contain small subnetworks (∼20%
weights) that can be trained to match or exceed the original
accuracy provided that the initial weight settings for the
subnetwork are retained [8, 27]. In effect, most (∼80%–90%)
of the weights serve as a scaffolding necessary only to identify
the weights that should survive in the final pruned subnetwork.
Most of the proposed sparse training algorithms work by

gradually increasing sparsity during the training process. The
lottery ticket algorithm [8] prunes 20% of the network every
50,000 training iterations by removing the lowest-magnitude
weights; the authors report 5–10× model size reduction
on CIFAR10 targets. Eager Pruning [49] follows a similar
magnitude-based approach, but adds a feedback loop and
a checkpoint-based rollback scheme to avoid overpruning;
maintaining top-1 accuracy on ImageNet, it can prune ResNet50
2.4× (25.6M→10.8M weights) by removing 0.8% of the
weights every 24,000 iterations. Both approaches rely on sorting
all weight values to select which weights to keep.
Dynamic sparse reparametrization [33] starts by randomly

distributing zero weights at the desired sparsity level, but allows
the zeros to redistribute across the weight tensor during training.
For ResNet50, for example, ∼200,000 additional parameters are
set to zero every 1,000–8,000 iterations, but an equal number
of weights are allowed to regrow after each pruning step. It
avoids the need to sort all weights by using a value threshold
adjusted via a set-point feedback loop whenever the network is
pruned; however, the initial value of this threshold becomes a
hyperparameter. ResNet50 can be pruned 3.5× (25.6M→7.3M)
with some top-1 accuracy loss on ImageNet (−1.6%).

In contrast to the gradual pruning approaches [8, 33, 49],
the Dropback algorithm [10] prunes the network from the
beginning: only a fixed percentage of the parameters (e.g.,
10%) are ever allowed to change. In every iteration, only
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init: , (0) with , (0) ∼ # (0, f)
output: , (C)
while not converged do

) =

{��� ∑C−1
8=0

[m 5 (, (8−1) ;G (8−1) )
mF

��� s.t. F ∈ ,trk

}
% =

{��� [m 5 (, (8−1) ;G (8−1) )
mF

��� s.t. F ∈ ,prn

}
( = sort() ∪ %)
mask = 1(( > ( [:])
, (C) =
mask ·

(
, (C−1)−[∇5

(
, (C−1) ; G (C−1) ) ) +mask ·, (0)

C = C + 1

Alg. 2: Dropback algorithm [10]. ,trk and ,prn = tracked
and pruned weights; ) and % = tracked and pruned
accumulated gradients; ( = sorted accumulated gradients;
: = number of gradients to keep; [ = learning rate. mask
is a boolean matrix indicating which weights to keep and
mask is its logical inverse.

the weights with the highest accumulated gradient survive
(which again requires sorting), on the theory that this represents
learning better than magnitude during early iterations; the
pruned weights are reset to their initial values rather than
to 0. Dropback prunes ResNet18 11.7× (11.7M→1M) while
maintaining top-1 accuracy on ImageNet.

In this paper, we focus on Dropback algorithm (Algorithm 2),
which offers by far the highest compression ratios and in-
troduces only one additional parameter (the sparsity factor)
during training. Unfortunately, two aspects stand in the way
of hardware acceleration: (a) pruned weights are not set to 0,
and so MAC energy is not saved; and (b) millions of gradients
must be sorted to determine which weights should be pruned.
We demonstrate how to overcome these drawbacks and make
Dropback algorithm hardware-friendly in Section III.

III. Adapting sparse training algorithms to hardware
To adapt Dropback algorithm to the requirements of an efficient
hardware implementation, Procrustes
(i) creates computation sparsity by decaying initial weight

values , (0) over the first 1,000 iterations, and
(ii) avoids the need to sort all gradients by using dynamic

quantile estimation to continuously determine a threshold
value that tracks the target sparsity.

We discuss the details below.

A. Creating computation sparsity
A key challenge in using Dropback algorithm [10] to enable
energy-efficient training is the fact that it never entirely removes
pruned weights: instead, pruned weights have their values
returned to their initialization-time values. These are generally
non-zero, so no MAC operations are saved, and, because MAC
computation accounts for much of the energy during training
(cf. Figures 1 and 17), energy savings are also limited.

To determine how to recover computation sparsity, we first
considered the function of the weights during training. We
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Fig. 6: Validation accuracy over the course of training when
initial weights decay 0.9× every iteration, compared to a
baseline without decay (VGG-S on CIFAR-10). The dashed
vertical line indicates the point at which all initial weights have
decayed to zero (1,000 iterations, or early in the second epoch
as epochs are 800 iterations each).

hypothesized that the initial weight values are important during
the early iterations when weights have not moved far from their
initial state and the accumulated gradients are small compared
to the initial weights. Later on, we reasoned, the accumulated
gradients are much larger than the initial weight values, and
the initial scaffolding could safely be removed.
We therefore examined whether the initial weight values

could be gradually decayed to zero so that eventually only the
accumulated gradients remain and all pruned weights become
zero. We decayed the initial weight values 10% every iteration
(decay parameter _ = 0.9), eventually zeroing them; the
resulting training scheme is detailed in Algorithm 3. Figure 6
shows how validation accuracy evolves over the course of
training compared to a baseline where weights do not decay:
neither accuracy nor convergence time are affected.

init: , (0) with , (0) ∼ # (0, f)
output: , (C)
while not converged do

) =

{��� ∑C−1
8=0

[m 5 (, (8−1) ;G (8−1) )
mF

��� s.t. F ∈ ,trk

}
% =

{��� [m 5 (, (8−1) ;G (8−1) )
mF

��� s.t. F ∈ ,prn

}
( = sort() ∪ %)
mask = 1(( > ( [:])
, (C) =
mask ·

(
, (C−1)−[∇5

(
, (C−1) ; G (C−1) ) )+mask·_C, (0)

C = C + 1

Alg. 3: Dropback algorithm with initial weight decay. ,trk
and ,prn = tracked and pruned weights; ) and % = tracked
and pruned accumulated gradients; ( = sorted accumulated
gradients; : = number of gradients to keep; [ = learning
rate; _ = decay parameter (we used 0.9). mask is a boolean
matrix indicating which weights to keep and mask is its
logical inverse.

In this experiment, the initial weight decay scheme results in
80% weights set to zero by iteration 1000 (out of 234,400
total iterations). This means that 60% of computation in 99.5%
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of iterations can be entirely skipped, potentially resulting in
significant energy savings.

B. Choosing which weights to keep

The second key challenge of the original Dropback algorithm is
the need to sort all accumulated gradients to determine which
weights should be kept and which should be reset to their
initial values. A comparison-based sort requires a minimum of
log2 (=!) comparisons in the worst case — 336M comparisons
for the relatively compact VGG-S with 15M weights, compared
to the 4.3G MACs required for one training iteration with batch
16. Even if the DNN accelerator were modified to support
sorting (i.e., to return both indices and values), sorting would
take in excess of 1.3M cycles on a 256-PE device.
To overcome this challenge, we considered replacing the

target sparsity factor (such as 10×) with a global value threshold
o. In this scheme, every computed gradient is tested whether
it should be added to the tracked set ) , and added to ) only
if it exceeds o. This would reduce the number of comparisons
to one per produced gradient (15M for VGG-S).
The question is how to determine o for each iteration.

Dynamic sparse reparametrization [33] accomplishes this via
a set-point feedback scheme that adjusts o every 1,000–8,000
iterations, but this introduces an additional hyperparameter,
the initial value of o. Instead, we determine o dynamically
via a streaming quantile estimation technique [45], shown in
Algorithm 4. To allow for peak update rate (up to 4 per cycle
in the last VGG-S conv layer), we extended the technique to
process four updates at once.

The tracking process proceeds as follows:
– If the gradient dimension XF is not in the tracked set ) ,
|XF | is compared against o. If it is higher, XF evicts and
replaces the lowest entry in ) ; otherwise, it is discarded.
In either case, |XF | is used to update the quantile estimate
(Algorithm 4).

– If XF is tracked, it is added to the stored accumulated
gradient Xacc

F . The quantile estimate is updated with |Xacc
F +

XF |.
In our experiments, we found that the tracking accuracy
sensitivity to the values of &̂@ (0) and r is negligible, so
we use the same values for all experiments (see Algorithm 4)
rather than treating them as hyperparameters.

To determine the accuracy of this estimate, we trained VGG-
S using a sparsity target of 7.5× and streamed the computed
accumulated gradients to the estimator. Figure 7 shows that
while the quantile estimation exhibits minor deviations from
ground truth (because different layers have different amounts
of sparsity), these estimation errors have no detrimental effect
on the validation accuracy of the trained network. Overall, the
quantile estimation error results in extra weights being tracked,
and reduces the sparsity factor slightly from 7.5× to 5.2×;
however, this overhead is much lower than that required to sort
all weights or to train a dense network.

Note that selecting weights through quantile estimation is not
specific to the Dropback algorithm: separating some fraction

init: &̂@ (0) = 10−6; r = 10−3

input: X(=), &̂@ (=)
output: &̂@ (= + 1)
if &̂@ (=) < X(=) then

&̂@ (= + 1) = (1 + r@) &̂@ (= + 1)
else

&̂@ (= + 1) = (1 − r (1 − @)) &̂@ (= + 1)

Alg. 4: The quantile estimation algorithm DUMIQUE [45].
X(=) = the =th accumulated gradient value computed; &̂@ (=)
= the @th quantile estimate at step =; r = adjustment rate
hyperparameter. Procrustes uses a modified, parallelized
variant which treats the average of four incoming accumu-
lated gradients as a single X(=).
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Fig. 7: Validation accuracy over training epochs when sparse
training is used and quantile estimation (Algorithm 4) is used
to determine the value threshold o under which accumulated
gradients are discarded, compared to a baseline with initial
weight decay and exact sorting (VGG-S on CIFAR-10).

of the highest-value or highest-gradient weights is needed by
all sparse training algorithms [8, 10, 32, 33].

IV. Dataflow & sparse data format
A. Storage and sparsity during training
Weights (or, more precisely, accumulated gradients) are always
stored compressed using the format described in Section IV-B.
Typically, all weight gradients are produced, but most gradients
that are not already tracked will not survive the comparison
with existing accumulated gradients.

Activations are stored uncompressed for immediate reuse
and in a compressed format for long-term reuse. The forward
pass reads sparse weight tensor, and produces a dense output
activation tensor, which is then immediately reused as inputs
to the next layer; the activations are then compressed using a
sparse, zero-free format, and reused in the weight update stage.
This technique is similar in spirit to Gist [21].

B. Compressed sparse weight representation
To avoid the challenges discussed in Section II-D, a sparse
weight storage format designed for training must support:
(i) iterating through 2D convolution filters across different

dimensions in different stages (for conv layers), and across
both rows and columns of weight matrices (for fc layers),
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Fig. 8: The compressed sparse block (CSB) weight representa-
tion in Procrustes.

(ii) rotating kernels (for conv layers) or transposing weight
matrices (for fc layers), and

(iii) different kernel sizes in conv layers.
Procrustes uses a modified compressed sparse block (CSB)
format [5] shown in Figure 8 to store weights in the on-chip
global buffer and external DRAM. Blocks store non-zero values
and are variable in size because of sparsity, but correspond to
fixed-size regions in the corresponding dense weight space —
kernels for conv layers, square fragments of the weight matrix
in fc layers, etc. The region size can vary on layer granularity
to support different kernel sizes.
The Procrustes CSB format comprises three components,

illustrated in Figure 8:
(a) the weight array, which stores variable-size packed weight

blocks corresponding to kernels, etc.;
(b) the pointer array, indexed by tensor coordinates, which

identifies the weight array location that stores the relevant
weight values; and

(c) the mask array, also indexed by tensor coordinates, which
stores a mask identifying non-zero value locations in the
unpacked block (and therefore also the packed size).

The pointer and mask arrays are decoupled to support different
mask lengths for each layer (e.g., different kernel sizes in conv
layers, flexible block sizes in fc layers and during weight
update, and so on); in all of our simulations, mask arrays fit
in the on-chip GLB.
Because the pointer array is indexed by coordinates in

the original (dense) operation space and is decoupled from
the compressed contents, the format makes computing kernel
addresses straightforward while adapting cleanly to different
kernel dimensions. The indirection also makes it easy to
determine the density of working sets assigned to each PE:
it suffices to subtracting pointers of adjacent work tiles. In
addition, because blocks are sized to and retrieved on filter
granularity, they can be rotated (to be used in the backprop
pass) while being fetched from the global buffer to the per-PE
register files; similarly, transposition of the weight matrix for
the fc layers can be done by transposing subtensors piecewise.

Activations are stored uncompressed for short term reuse (as
activations in the next layer) and compressed in CSB format
for long-term reuse (forward pass to weight update).

A B D
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A1 B1 D1C2 B2D2

(a) C

C1 C2

C1 A2

(b)

(c)

dense sparse

(d) A’ B’ D’C’

Fig. 9: Load balancing: work tiles are cut in half (b) and the
halves rearranged in dense-sparse pairs (c).
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Fig. 10: Load balancing in the weight-stationary �,  dataflow
in a four-PE array: (a) PE workload imbalance (shaded PEs) due
to different weight sparsities (shaded arrows); (b) PE workloads
and the corresponding weight (F) and partial sum (H) tiles
split in half across the  dimension (note the thinner arrows);
(c) half-tiles exchanged between the top-left and bottom-right
PEs for load balancing. Activations must be sent on both rows
and columns, and require twice the buffer space in the PEs.

C. Load balancing and dataflow
Figure 9 illustrates the load balancing process used in Pro-
crustes. First, every work tile (a) is cut into two halves along one
of the tile dimensions (b); because sparsity is almost certainly
uneven within the tile, the two halves will likely have different
densities. Next, the halves are sorted according to density,
and half-tiles are matched starting from opposite ends (c): the
sparsest half-tile is matched with the densest half-tile, and so
on. This ensures that each newly formed tile is as close as
possible to the average density across all PE work tiles (d).
However, naively applying this rebalancing scheme to the

entire PE array without changing the dataflow would impact
on-chip communications patterns and require a complex inter-
connect. Figure 10 demonstrates this on the weight-stationary
�,  dataflow on a 4-PE array. In pane (a), input activations
are broadcast horizontally (G� in the top row and G� in the
bottom row), partial sums are accumulated vertically (H� in
the left column and H� in the right column), while the weights
are unicast (as in Figure 3); however, because the weights
have different levels of sparsity (shaded arrows), the PEs have
different amount of computation (shaded PEs). In pane (b), each
PE’s workload is cut in half as discussed above; each weights
tile (F� and F�) is also split in half (e.g., into F�1 +F�2 and
F�1 + F�2, note the thinner arrows), as are the corresponding
partial sums (H� and H�). Finally, in pane (c), the workload
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Fig. 12: Load balancing in the proposed  , # dataflow in a
four-PE array: (a) PE workload imbalance (shaded PEs) due to
different weight sparsities (shaded arrows); (b) PE workloads
and the corresponding weight (F) and partial sum (H) tiles
split in half across the  dimension (note the thinner arrows);
(c) half-tiles exchanged between the top-left and bottom-right
PEs to load-balance across  . Each input activation tile is still
sent to only one column.

halves are balanced across the PE array, so that the top-left
and bottom-right PEs swap half their workloads; this, however,
means that all input activations (G� and G�) must now be sent
to both columns and rows, requiring more bandwidth and a
more complex interconnect, and double the activations must be
buffered at the target PEs. The %,& input-stationary dataflow
faces similar challenges in the weight update pass (cf. Figure 2)
and requires unicasting two of the three datatypes.

Procrustes addresses both of these problems by leveraging a
simple observation: training is typically done across a minibatch
of 32–64 samples rather than on single items [4, 31].†
Because a training accelerator does not need to support

single-sample inference, the minibatch dimension (# in Al-
gorithm 1) can be used to distribute work tiles across one
dimension of the PE array. The other dimension can then
be safely chosen to be a dimension where sparsity exists —
e.g., the input or output channel dimensions (� or  ) with
weight sparsity. Because only one dimension is sparse, and
that dimension corresponds to spatial reuse, the load balancing
process needs to be applied only to one dimension of the PE
array (i.e., the dimension opposite to the spatial reuse pattern,
here #).
Figure 11 illustrates how a  , # mapping (output channel,

minibatch) with load balancing across the output channel ( )
dimension preserves the single-dimension dataflow properties

†Minibatches in the 1,000s allow faster training on large multi-GPU clusters
but can incur some accuracy cost [1, 12].
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Fig. 13: Load imbalance histogram of full-chip working
sets (columns in Figure 4b) after load-balancing half-tiles
(VGG-S/CIFAR-10). Compare with Figure 5. A perfectly
load-balanced workload would have 100% of the sets at 0%
overhead.

(cf. Figure 3) during the forward pass. Weights are now
the same across the minibatch and are multicast across the
horizontal dimension of the PE array, partial sums are collected
across the vertical dimension, and input activations vary across
both dimensions and so are unicast.

A detailed example is shown in Figure 12. As in Figure 10,
pane (a) shows the unbalanced workload, pane (b) shows each
PE’s workload (and consequently the weight and partial sum
tiles) cut into half, and pane (c) shows the PE array after load-
balancing along the  dimension. Observe that, in contrast to
Figure 10, the load-balanced dataflow in pane (c) has the same
on-chip interconnect communication patterns and requires the
same interconnect bandwidth as the unbalanced dataflow in
pane (c).

Finally, Figure 13 demonstrates that this technique results in
effective load balancing. While the balance is not 100% perfect,
the execution time overheads for most full-PE-array working
sets are small at <10%, with the worst imbalance at 30% — a
vast improvement to the common 40%–50% overheads and up
to 2× slowdown without load balancing (see Figure 5).

V. Hardware architecture
The overall hardware architecture of Procrustes is based on 2D
PE array where each PE has a local register file (RF) and all
PEs share an on-chip global buffer (GLB); an off-chip DRAM
completes the memory hierarchy. PEs are interconnected via
three simple interconnects: two support one-dimensional traffic
flows in the horizontal and vertical directions, and one supports
unicast traffic to any PE in the array. Because Procrustes focuses
on training, we use 32-bit floating point MAC units in the PE
datapath, but the design can be used with any datatype.

The design is illustrated in Figure 14, with differences from
the baseline accelerator dashed. Procrustes places one global
quantile estimation unit (QE) between global buffer and the
external DRAM; the QE unit monitors accumulated gradients
flowing from the GLB to DRAM and discards all except those
above the target sparsity quantile.
In addition, each PE contains a weight recomputation unit

(WR) responsible for generating the initial weight values. The
WR accepts a weight index and generates a 32-bit integer initial
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the QE unit is added to support quantile estimation, and the
load balancer is added to support work tile re-balancing.

Baseline dense accelerator

PEs 256 (16×16)
datatype 32-bit floating-point
pruning type none
interconnect 3× 1D-flow interconnect
global buffer 128 KB
local buffer (RF) 1 KB per PE
dataflow optimal (via Timeloop+Accelergy)

Procrustes modifications

pruning type lowest accumulated gradients
pseudo-RNG xorshift [30], one per PE
quantile estimator DUMIQUE [45], max 4 requests / cycle
dataflow optimal spatial-minibatch dimension

TABLE I: Hardware configurations for the baseline dense
training accelerator and Procrustes sparse training accelerator.

value for the relevant weight. It consists of 3 xorshift [30]
pseudo-random generators (RNGs) whose outputs are added to
produce an approximately Gaussian output. Note that, unlike
conventional RNG, the WR unit does not contain hidden state,
and is purely a function of its seed and the weight index. The
“RNG” output is then scaled using an integer multiplier; this
this enables popular initialization formulæ like Xavier [9] or
Kaiming [17], and allows the initial weights to be decayed as
per Algorithm 3. Finally, the scaled value is converted to FP32
and added to the accumulated gradient retrieved from weight
storage if the weight is tracked, or to zero if the weight has
been pruned.

VI. Evaluation
A. Methods
We re-implemented the baseline Dropback training algo-
rithm [10] using PyTorch [37] and verified the reported training
sparsity levels and accuracy results; we then implemented the
initial weight decay (IC) and quantile-estimation extensions
needed for Procrustes.
We evaluated Procrustes on five CNNs: ResNet18 [18]

(11.7M weights) and MobileNet v2 (3.5M weights) applied
to the ImageNet image classification task [38], as well VGG-
S [46] (a 9.2× reduced version of VGG-16 with 15M weights),
WRN-28-10 [47] (36.5M weights), and a small Densenet [19]
(growth rate 24, 3 blocks × 10 layers, for a total of 2.7M
weights), all CIFAR-10 [23].

To determine optimal mappings and dataflows, we extended
Timeloop [35] to support sparse weight masks (retrieved from
our PyTorch model), model sparse computation, account for
sparse encoding overheads, and accurately reflect latency due
to load imbalances. We also used Timeloop to determine cycle-
level latency; to determine energy costs, we use energy access
cost provided in Accelergy [42] with its default 40nm library.
We modelled all layers of all networks and all stages of training
(forward, backward, and weight update).

As a dense baseline, we used a 2D PE array architecture
with 16×16 PEs, adapted to the 32-bit floating-point precision
commonly used in training; we used Timeloop to determine the
optimal tiling and dataflow. Hardware modules not present in
the baseline were implemented in Verilog RTL and synthesized
using Synopsys DC in the 45nm FreePDK process. Accelerator
configuration details are shown in Table I.

B. Pruning ratios and accuracy
Table II shows the sparsity factors achieved while maintaining
the same accuracy as the corresponding dense (unpruned) net-
work using the Procrustes sparse training algorithm. Depending
on the network, our training scheme achieves 3.9×–11.7×
weight sparsity without compromising accuracy.

Importantly, achieving unpruned-level accuracy does not
require additional convergence time. Figure 15 demonstrates
this on the VGG-S, DenseNet, and WRN, all on CIFAR-10.
Figure 16 demonstrates the same effect on ResNet18 trained on
ImageNet at various weight pruning ratios. Overall, Procrustes
converges reaches state-of-the-art accuracy as quickly (or faster)
than the baseline unpruned network.

C. Energy savings and speedup
Figure 17 shows the energy savings obtained by training with
Procrustes across several CNNs. Most of the energy is saved
by performing fewer MAC operations; because training is most
often done on FP32 values, MACs dominate the energy usage.
Intra-PE register file (RF), global buffer (GLB), and DRAM
access energies are also substantially reduced, but account for
less of the baseline energy expenditure, and therefore contribute
less to the overall savings.
The figure also illustrates that Procrustes can transform

higher sparsity ratios into bigger energy savings: ResNet18,
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model dataset dense dense sparse sparse sparsity # epochs dense pruned
size MACs size MACs accuracy accuracy

Densenet CIFAR-10 2.7M 528M 692k 157M 3.9× 340 94.2% 93.7%
WRN-28-10 CIFAR-10 36M 4G 8.3M 863M 4.3× 462 96.0% 96.1%
VGG-S CIFAR-10 15M 269M 2.9M 113M 5.2× 236 93.0% 93.1%

MobileNet v2 ImageNet 3.5M 301M 0.35M 75M 10× 131 70.98% 71.13%
ResNet18 ImageNet 11.7M 1.8G 1M 359M 11.7× 81 69.17% 69.31%

TABLE II: Sparsity achieved using the Procrustes training scheme for the CNNs tested, together with weight footprint and
MAC reduction and the final accuracy compared to the dense baseline.
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Fig. 15: Validation accuracy over training time for Procrustes and the unpruned baseline (SGD) on CIFAR-10: (left) VGG-S,
(centre) DenseNet, and (right) WRN-10-28.
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Fig. 16: Validation accuracy over training time for Procrustes and the unpruned baseline for ResNet18 (left) and MobileNet v2
(right) on ImageNet.

which has the highest pruning factor (11×), saves the most
energy compared to the dense baseline (3.26×), while WRN
has the best speedup (4×). MobileNet v2 benefits less in
energy because its depth-separable convolutions limit reuse and
so comparatively more energy is spent on DRAM accesses;
however, Procrustes still trains it with 2.39× less energy than
the dense baseline, and almost as much speedup as WRN
(3.88× faster than dense).

For most networks, the forward and back-propagation passes
offer more energy savings; this is because those passes can
take advantage of weight sparsity, which is generally higher
than activation sparsity. VGG-S demonstrates a less common
case where the weight sparsity is concentrated in the layers
that perform relatively few MACs, so the activation sparsity
leveraged by the weight-update phase actually saves more
operations.
Overall, Procrustes is effective in converting training-time

sparsity to energy savings.

D. Mapping and dataflow choice
Figure 18 shows how energy expenditure varies with different
spatial partitioning schemes. Sparsity enables energy improve-

ment across all phases and all mappings. Because the number
of MAC operations and the memory hierarchy are the same
across the different mappings, the lion’s share of the energy
use is the same across the different dataflows, and variations
are negligible. This is in agreement with prior work that also
reported negligible impact of the chosen dataflow on the energy
during inference [44].
This finding enables us to select spatial partitioning that

results in the best performance (i.e., shortest execution time).
Figure 19 shows how execution times vary when the working

set is mapped to the PE array using different spatial partitioning
schemes; all schemes can be implemented using the simple
network topology shown in Figure 14 except the weight-
stationary �,  scheme, which requires a complex network
to load-balance PE working sets across the entire chip. The
partitioning schemes that distribute the minibatch dimension
along one of the PE array dimensions (�, # and  , #) are
the fastest mappings because they are able to achieve effective
load balancing and good utilization across all layers of the
CNNs;  , # performs slightly better because it offers slightly
higher utilization in the first network layer. The �,  scheme
performs less well even though it requires a more complex
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Component Power (<,) Area (`<2)
Per-PE area: Procrustes overheads italicized

FP32 MAC 7.29 18,875.72
Register File 15.61 198,004.71

PRNG 0.35 1,920.84
Mask Memory 2.65 44,932.66
System area: Procrustes overheads italicized

Global Buffer 73.74 17,109,596.5
Quantile Engine 1.38 9,861.4
Load Balancer 2.05 8,725.23

TABLE III: Silicon area costs and overheads (synthesis using
Synopsys DC with the FreePDK 45nm library). For fairness,
the power estimates assume the same dense computation (i.e.,
no sparsity).

interconnect, largely because it is inefficient on layers that have
few channels. The activation-stationary %,& scheme does not
require load-balancing in the forward and back-propagation
phases, is hard to load-balance during the weight update phase,
and has low utilization when activation tensors are relatively
small; it is overall the slowest mapping.

Procrustes uses the overall fastest  , # scheme for all phases
of training.

E. Scalability

Figure 20 shows how Procrustes scales when the PE array size
is quadrupled from 256 cores (16×16) to 1024 cores (32×32);
the global buffer size is doubled over the 256-core size (a factor
of
√

2). Overall, energy is very similar same for all dataflows
/ passes because the number of MAC operations is the same.
Latency scales near ideally (3.9× on 4× the cores) in the
 , # mapping used by Procrustes. Other mappings (especially
activation-stationary %,&) do not scale as well since they trade
off PE array utilization to retain spatial reuse.

F. Silicon area overheads

The silicon area and power overheads of Procrustes are detailed
in Table III. Despite the RNG initial weight recomputation
module being included in every PE, its area and power pale in
comparison to the FP32 MAC unit which all PEs include.
Overall, the Procrustes accelerator has an area overhead of

14% over an equivalent dense accelerator, and consumes 11%
more power when executing the same dense workloads. Both
are a small price to pay for the 2.27×–3.26× energy savings
offered by sparse training.

G. Generality

Procrustes is the first sparse training accelerator to combine
substantial sparsity ratios, 2.27×–3.26× energy savings, and up
to 4× speedups while maintaining state-of-the-art accuracy of
the trained networks. While in this paper we use Procrustes to
extend the Dropback training algorithm, the quantile estimation
and spatial-minibatch dataflow insights apply to all existing —
and likely many future — sparse training algorithms.

VII. Related work
A. Sparse accelerators
Eager Pruning [49] is the only extant proposal for a sparse
training accelerator. It works by starting with a dense network
and very gradually pruning the lowest-magnitude weights, with
fewer than 1% of weights removed every tens of thousands
of training iterations; maintaining accuracy limits pruning to
comparatively low factors of 1.5–3.5×. The accelerator uses on
a weight-stationary dataflow where denser filters are distributed
over more PEs than sparser filters; to manage the resulting
irregularity in collecting partial sums, the authors propose a
module that connects the PEs and can either accumulate or
route partial sums. Although the Eager Pruning algorithm relies
on sorting weights, this does not appear to be considered in the
hardware or the latency and energy measurements. In contrast,
Procrustes achieves higher pruning factors, does not rely on
sorting weights, and avoids the need for a complex interconnect
via a novel load balanced dataflow.

All other sparse accelerators only support inference. EIE [13]
and CambriconX [50] use a variants of the compressed sparse
column format, which prevents them from efficiently accessing
weights during the backward pass. SCNN [36] and SparTen [11]
use an input-stationary dataflow to enable both weight and
activation sparsity; however, both use a CSC-like format to
encode sparse weights, and neither can be used to accelerate
training.

B. Sparse training algorithms
Most proposed sparse training algorithms very slowly increase
sparsity during the training process. The lottery ticket algo-
rithm [8] prunes 20% of the network every 50,000 training
iterations by removing the lowest-magnitude weights; the
authors report 5–10× model size reduction on CIFAR10 targets.
Eager Pruning [49] follows a similar magnitude-based approach,
but adds a feedback loop and a checkpoint-based rollback
scheme to avoid overpruning; maintaining top-1 accuracy
on ImageNet, it can prune ResNet50 2.4× (25.6M→10.8M
weights) by removing 0.8% of the weights every 24,000
iterations. Unlike Procrustes, both approaches rely on sorting
all weight values to determine which weights to keep.
Dynamic sparse reparametrization [33] starts by randomly

distributing zero weights at the desired sparsity level, but allows
the zeros to redistribute across the weight tensor during training.
For ResNet50, for example, ∼200,000 additional parameters
are set to zero every 1,000–8,000 iterations, but an equal
number of weights are allowed to regrow after each pruning
step. It avoids the need to sort all weights by using a value
threshold adjusted via a set-point feedback loop whenever the
network is pruned; however, the initial value of this threshold
becomes a hyperparameter. This method prunes ResNet50 3.5×
(25.6M→7.3M) with some top-1 accuracy loss on ImageNet
(−1.6%). Procrustes offers higher sparsity factors and prunes
the network much more quickly, which translates to substantial
energy savings.

Dropback [10] prunes the network from the beginning: only
a fixed percentage of the parameters (e.g., 10%) are ever
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right) ResNet18, and (right) MobileNet v2. Lower is better. K = output channel dimension; N = minibatch dimension. S =
sparse; D = dense. fw = forward pass; bw = backward pass; wu = weight update phase.
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Fig. 18: Energy Comparison across different dataflows for (left) WRN-10-28, (middle left) DenseNet, (middle) VGG-S, (middle
right) ResNet18, and (right) MobileNet v2. Lower is better. C = input channel dimension; K = output channel dimension; P and
Q = output activation dimensions; N = minibatch dimension. S = sparse; D = dense. fw = forward pass; bw = backward pass;
wu = weight update phase.
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Fig. 19: Training latency across different dataflows for (left) WRN-10-28, (middle left) DenseNet, (middle) VGG-S, (middle
right) ResNet18, and (right) MobileNet v2. Lower is better. C = input channel dimension; K = output channel dimension; P and
Q = output activation dimensions; N = minibatch dimension. S = sparse; D = dense. fw = forward pass; bw = backward pass;
wu = weight update phase.
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Fig. 20: Scalability of Procrustes on 16×16 (256) to 32×32 (1024) cores on ResNet-18 and MobileNet v2 classifying ImageNet
configured as in Figs. 17–19. Energy differences are is negligible as the workload is the same. Speedup scales best for the
Procrustes mappings (CN and KN) because other mappings trade off utilization for reuse.
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allowed to change. In every iteration, only the weights with
the highest accumulated gradient survive (which again requires
sorting), on the theory that this represents learning better than
magnitude during early iterations; the pruned weights are reset
to their initial values rather than to 0. With Dropback, ResNet18
can be pruned 11.7× (11.7M→1M) while maintaining top-1
accuracy on ImageNet. Procrustes adapts Dropback to the
needs of an efficient hardware implementation, removing the
requirement for sorting and decaying initial weights to 0 to
create computation sparsity.

VIII. Summary
This paper introduces Procrustes, a sparse DNN training
accelerator that produces pruned models with the same accuracy
as dense models without first training, then pruning, and finally
retraining, a dense model.
Procrustes relies on three key techniques. First, it adapts

an existing training algorithm to create computation sparsity
that can be converted into energy savings. Next, it replaces the
sorting step present in nearly all sparse training algorithms with
hardware-friendly, computationally simple quantile estimation.
Finally, it leverages a novel load-balancing scheme that converts
sparsity into speedup, and proposes a novel dataflow that
enables load balancing without significant changes to the on-
chip interconnect.
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