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Abstract—The appetite for higher and higher 3D graphics
quality continues to drive GPU computing requirements. To
satisfy these demands, GPU vendors are moving towards new
architectures, such as MCM-GPU and multi-GPUs, that connect
multiple chip modules or GPUs with high-speed links (e.g.,
NVLink and XGMI) to provide higher computing capability.

Unfortunately, it is not clear how to adequately parallelize the
rendering pipeline to take advantage of these resources while
maintaining low rendering latencies. Current implementations
of Split Frame Rendering (SFR) are bottlenecked by redundant
computations and sequential inter-GPU synchronization, and fail
to scale as the GPU count increases.

In this paper, we propose CHOPIN, a novel SFR scheme
for multi-GPU systems that exploits the parallelism available
in image composition to eliminate the bottlenecks inherent to
existing solutions. CHOPIN composes opaque sub-images out-of-
order, and leverages the associativity of image composition to com-
pose adjacent sub-images of transparent objects asynchronously.
To mitigate load imbalance across GPUs and avoid inter-GPU
network congestion, CHOPIN includes two new scheduling mech-
anisms: a draw-command scheduler and an image composition
scheduler. Detailed cycle-level simulations on eight real-world
game traces show that, in an 8-GPU system, CHOPIN offers
speedups of up to 1.56× (1.25× gmean) compared to the best
prior SFR implementation.

I. Introduction

Graphics Processing Units (GPUs) were originally developed to
accelerate graphics processing — the process of generating 2D
images from 3D models [30]. Although much recent computer
architecture research has focused on using GPUs for general-
purpose computing, high-performance graphics processing has
historically accounted for the lion’s share of demand for GPUs.
This continues to be the case, with graphics remaining the
dominant source of revenue for GPU vendors: for example,
NVIDIA’s year 2019 revenues from the gaming (GeForce) and
professional visualization (Quadro) markets combined are 2.5×
and 11.5× higher than that from the datacenter and automotive
markets, respectively [51]. This is driven by many applications,
including gaming, scientific data visualization, computer-aided
design, virtual reality (VR), augmented reality (AR), and so
on. Gaming itself continues to evolve: 4K and VR gaming
demand 4× and 7× more performance than 1080p HD gaming,
respectively [3, 46], while modern games have millions or
billions of triangles often smaller than a pixel [8].
This need for substantial performance improvements has,

however, been increasingly difficult to satisfy with conven-
tional single-chip GPU systems. To continue scaling GPU

performance, GPU vendors have recently built larger sys-
tems [47, 49, 50] that rely on distributed architectures such
as Multi-Chip-Module GPU (MCM-GPU) [15] and multi-
GPUs [34, 56, 67]. MCM-GPU and multi-GPU systems promise
to push the frontiers of performance scaling much further by
connecting multiple GPU chip modules (GPMs) or GPUs with
advanced packaging [55] and networking technologies, such as
NVIDIA’s NVLink [42], NVSwitch [43], and AMD’s XGMI [1].
In principle, these platforms can offer substantial opportunities
for performance improvement; in practice, however, their
performance tradeoffs for graphics processing are different
from that of single-chip GPUs, and fully realizing the benefits
requires the use of distributed rendering algorithms.
Distributed rendering is, of course, not new: GPU vendors

have long combined two to four GPUs using SLI [45] and
Crossfire [11]. These distribute the rendering workload using
either alternate frame rendering (AFR), where different GPUs
process consecutive frames, or split-frame rendering (SFR),
which assigns disjoint regions of a single frame to different
GPUs. AFR processes alternate frames independently and im-
proves the average frame rate, but does nothing to improve the
instantaneous frame rate, which can be significantly lower than
the average frame rate. This problem, called micro-stuttering,
is inherent to AFR, and can result in a dramatically degraded
gameplay experience [2, 5, 7]. In contrast, SFR can improve
both the frame rate and the single-frame latencies [20, 27, 40].
Because of this, SFR is more widely used in practice, and we
focus on SFR in this paper. The tradeoff, however, is that SFR
requires GPUs to exchange data for both inter- and intra-frame
data dependencies, which creates significant bandwidth and
latency challenges for the inter-GPU interconnect.
While the recent introduction of high-performance inter-

connects like NVLink and XGMI targets the inter-GPU
communication bandwidth constraints, key challenges still
remain. SFR assigns split screen regions to separate GPUs,
but the mapping of primitive (typically triangle) coordinates
to screen regions is not known ahead of time, and must be
computed before distributing work among GPUs. CPU pre-
processing techniques exist [20, 26, 27], but are limited by
low throughput. GPU methods rely on redundant computation,
where every GPU projects all 3D primitives to the 2D screen
space and retains only the primitives in its own screen region.
Unfortunately, this does not scale to modern workloads where
triangle counts have grown much faster than resolutions [8].
The recent proposal GPUpd [28] attempts to take advantage
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Fig. 1. Graphics processing: (a) data being processed; (b) rendering operations; (c) GPU microarchitecture (components specific to rendering are shaded).

of the new high-speed interconnects to reduce the redundant
computation, but is still bottlenecked by sequential inter-GPU
primitive redistribution needed to preserve the input order
of primitives (see Section III-A for a detailed analysis of
prior SFR solutions). Therefore, there is an urgent need for
parallel rendering schemes that can leverage today’s high-speed
interconnects and reliably scale to multi-GPU systems.
In this paper, we propose CHOPIN, an SFR technique

that eliminates the performance overheads of prior solutions
by leveraging parallel image composition. Draw commands
are distributed across different GPUs to remove redundant
computation, and image composition is performed in parallel
to obviate the need for sequential primitive exchange.
CHOPIN includes a novel draw command scheduler to

balance the workload among the GPUs, and a novel image
composition scheduler to reduce the network congestion that
can easily result from naïve inter-GPU sub-image exchange.
Overall, this paper makes the following contributions:
• We trace the main performance cost of existing SFR
mechanisms to redundant computation and sequential inter-
GPU communication requirements.

• We propose CHOPIN, a parallel composition technique
that takes advantage of the parallelism available in image
composition to remove overheads of prior SFR solutions.

• We develop a draw command scheduler and an image
composition scheduler to address load imbalance and in-
terconnect congestion challenges in distributed rendering.

Through an in-depth analysis using cycle-level simulations on a
range of real-world game traces, we demonstrate that CHOPIN
outperforms the prior state-of-the-art SFR implementation by
up to 1.56× (1.25× gmean) in an 8-GPU system.

II. Background

A. The 3D Rendering Pipeline

The 3D graphics pipeline, shown in Fig. 1(a), projects a 3D
scene with objects that often consist of thousands of primitives
(usually triangles) onto a 2D screen space. On the screen,
primitives end up as thousands of pixels, which are accumulated
in a framebuffer (FB) and sent to the display once rendering is
complete. Producing a single frame typically involves thousands
of draw commands to render all objects in the scene, all of
which must go through the graphics pipeline.

Fig. 1(b) shows the graphics pipeline defined by DirectX [18];
other pipelines (e.g., OpenGL [57]) are similar. The key pipeline
stages are geometry processing, rasterization, and fragment
processing. Geometry processing Ê first reads vertex attributes
(e.g., 3D coordinates) from memory and projects them to 2D
screen coordinates using vertex shaders. Vertices are grouped
into primitives (typically triangles); some primitives may then
be split into multiple triangles through tessellation, which
creates smoother object surfaces for a higher level of visual
detail. Generated primitives that are outside of the current
viewport are then culled by geometry-related shaders. The next
stage, called rasterization Ë, converts primitives into fragments,
which will in turn be composed to produce pixels on the screen.
Fragment processing Ì first performs the depth test (Z test)
which discards occluded fragments; the surviving fragments
then have their attributes (e.g., color) computed using a pixel
shader. Finally, the shaded fragments (which may be opaque or
semi-transparent) are composed to generate the pixels, which
are written to the framebuffer and eventually sent to the display.
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B. The Graphics GPU Architecture
Fig. 1(c) illustrates the overall microarchitecture of NVIDIA’s
Turing GPU [44]. It consists of multiple Graphics Processing
Clusters (GPCs), which are connected to multiple Rendering
Output Units (ROPs) and L2 cache slices via a high-throughput
crossbar. A Giga Thread Engine distributes the rendering
workload to the GPCs based on resource availability.

GPCs perform rasterization in dedicated Raster Engines, and
organize resources into multiple Texture Processing Clusters
(TPCs). Within each TPC, the PolyMorph Engine (PME)
performs most non-programmable operations of the graphics
pipeline except rasterization (e.g., vertex fetching, tessellation,
etc.). The Streaming Multiprocessor (SM), which comprises
hundreds of shader cores, executes the programmable parts
of the rendering pipeline, such as the vertex shaders, pixel
shaders, etc.; to reduce hardware complexity, SMs schedule
and execute threads in SIMD fashion (i.e., warps of 32 or 64
threads). The Texture Unit (TEX) is a hardware component
that samples 2D textures to map them onto 3D objects.
On the other side of the interconnect, ROPs perform

fragment-granularity tasks such as the depth test, anti-aliasing,
pixel compression, pixel blending, and pixel output to the
framebuffer. A shared L2 cache, accessed through the crossbar,
buffers the data read from off-chip DRAM.

C. MCM-GPU and Multi-GPU Architectures
In the past decade, transistor density improvements have
become harder to achieve, and may no longer be economically
realistic [59]. To continue improving performance, recent work
has focused on new architectures, such as MCM-GPU [15] at
the package level and multi-GPUs [34] at the system level —
platforms which connect multiple GPU chip modules (GPMs)
or GPUs with high-performance links (e.g., NVLink [42],
NVSwitch [43], or XGMI [1]).
Although GPMs/GPUs are independent hardware compo-

nents, researchers have proposed high-level abstractions that
present the system to programmers as if it were a single larger
GPU. To exploit data locality, both MCM-GPU and multi-
GPU systems schedule adjacent Cooperative Thread Arrays
(CTAs) to the same GPM/GPU, with each memory page usually
mapped to the GPM/GPU that first accessed it (i.e., first-touch).
Different GPMs/GPUs can cache the data of each other to
reduce inter-GPM/GPU communication [15, 16, 34, 67]. Scoped
memory consistency models [24, 31] and hierarchical cache
coherence protocols [56] have also been designed for solid and
efficient inter-GPM/GPU synchronizations. However, all of this
work has focused on general-purpose GPU applications rather
than the graphics rendering task we target with CHOPIN.

D. Parallel Image Composition
Image composition is the reduction of several images into one,
and is performed at pixel granularity. The reduction process
is a sequence of operations, each of which has two inputs:
the current pixel value ?old and the incoming value ?new. The
two are combined using an application-dependent function 5

to produce the updated pixel ? = 5 (?old, ?new). The exact

definition of 5 depends on the task: for example, 5 can select
the pixel which is closer to the camera, or blend the color
values of the two pixels. A common blending operation is
the over operator [54] ? = ?new + (1 − Unew) ∗ ?old, where ?

represents the pixel color and opacity components, and U is the
pixel opacity only. Other blending operators include addition,
multiplication, and so on.
For opaque pixels, 5 is commonly defined to compare the

depth value and keep the pixel which is closer to the camera.
Obviously, picking the smallest depth value from multiple pixels
can be done out-of-order. However, composition of transparent
or semi-transparent objects needs to blend multiple pixels,
which in general must follow the depth order either front-to-
back or back-to-front; for example, the visual effect of putting a
drop of light-pink water above a piece of glass is different from
the reversed order. For a series of pixels, therefore, the final
value of 5 is derived from an ordered reduction of individual
operations, 5 = 51 ◦ 52 ◦ · · · ◦ 5=. The ordering of 51 through
5= matters, and in general the sequence cannot be permuted
without altering the semantics of 5 . Fortunately, although
blending operators are not commutative, they are associative:
i.e., 51 ◦ 52 ◦ 53 ◦ 54 = ( 51 ◦ 52) ◦ ( 53 ◦ 54) [17]. As we detail in
Section III-B, CHOPIN leverages this associativity to compose
transparent sub-images asynchronously.

Apart from the reduction function, how pixels are sent to the
GPU where the reduction occurs also matters for performance.
The simplest communication method is direct-send [25, 41]:
once a GPU has finished processing its workload, it begins
to distribute the image regions that belong to other GPUs,
regardless of the readiness of the destination GPUs. With a large
number of GPUs, this can easily congest the network with many
simultaneous messages. To address this issue, binary-swap [32,
68] and Radix-k [53] first divide composition processes into
multiple groups, and then compose sub-images with direct-
send inside each group; to compose all sub-images, several
rounds of this procedure are required. Alternately, Sepia [35]
and Lightning-2 [60] rely on special hardware to accelerate
image composition, but this incurs significant hardware costs.
In contrast, the approach we take in this paper maintains

the simplicity of direct-send, and mitigates network conges-
tion issues via a novel image composition scheduler: within
CHOPIN, any two GPUs start composition-related transfers
only when they are ready and available.

III. Motivation
A. Limits of Existing SFR Solutions
SFR splits the workload of a single frame into multiple
partitions and distributes them among different GPUs. However,
because the screen location of 3D objects depends on the
camera view and is not known until after the primitive
projection phase, individual GPUs must synchronize and
exchange information somewhere along the rendering pipeline
in order to produce the correct final image.
Based on where this synchronization happens, SFR imple-

mentations fall into three categories: sort-first, sort-middle,
and sort-last [36]. Sort-first rendering identifies the destination
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GPUs of each primitive by conducting preliminary transforma-
tions at the very beginning of the graphics pipeline to compute
the screen coordinates of all primitives, and distributes each
primitive to the GPUs that correspond to the primitive’s screen
coordinates; after primitive distribution, each GPU can run
the normal graphics pipeline independently. In contrast, both
sort-middle and sort-last distribute primitives without knowing
where they will fall in screen space, and exchange partial
information later: sort-middle rendering exchanges geometry
processing results before the rasterization stage, while sort-last
rendering exchanges fragments at the end of the pipeline, before
final image composition.
Among these three implementations, sort-middle is rarely

adopted because the geometry processing output is very large
(hundreds of KBs per primitive) [29, 58]. Both CPUs and
GPUs have been used for the preliminary transformation
in sort-first rendering [20, 26, 27, 38, 45]. Thanks to higher
throughput, GPU-assisted implementations tend to perform
better than CPUs, but they duplicate all primitives in every
GPU to amortize the low bandwidth and long latency of
traditional inter-GPU links [38, 45]. In these schemes, each
GPU maps all primitives to screen coordinates, and eventually
drops the primitives that fall outside of its assigned screen
region. Unfortunately, this duplicated pre-processing stage is
not scalable: as shown in Fig. 2, redundant geometry processing
dominates the execution cycles of graphics pipeline and severely
impacts performance as the number of GPUs grows.

To address the problem of redundant computation and take
advantage of recent high-performance interconnects, Kim et al.
proposed GPUpd [28], shown in Fig. 3. A sort-first technique,
GPUpd attempts to evenly distribute all primitives of each
draw command across the GPUs. GPUs project the received
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primitives to screen space, and then exchange primitives based
on projection results so that each GPU owns only primitives
that fall into its assigned region of screen space. Finally, each
GPU executes the full graphics pipeline on its primitives.

While GPUpd can reduce the overhead of redundant primitive
projections, it requires GPUs to distribute primitive IDs
sequentially to maintain the input primitive order; otherwise,
a GPU would need a large memory to buffer exchanged
primitive IDs and a complex sorting structure to reorder them.
During the inter-GPU primitive exchange, GPU0 first distributes
its primitive IDs to other GPUs, then GPU1 distributes its
primitive IDs, and this procedure continues until all GPUs
have completed primitive distribution. As shown in Fig. 4, with
more GPUs in the system (2–8 GPUs), the sequential primitive
distribution becomes a critical performance bottleneck.

B. Parallel Image Composition in CHOPIN
To eliminate the performance overhead of redundant computing
and sequential inter-GPU synchronizations, in this paper, we
propose CHOPIN: a sort-last rendering scheme with a pipeline
shown in Fig. 3.

CHOPIN first divides consecutive draw commands of each
frame into multiple groups based on draw command properties.
Draw commands in each group are distributed across different
GPUs. Since each draw command is only executed in a single
GPU, CHOPIN is free of the redundant primitive projection
computations that arise in traditional SFR implementations.

At group boundaries, sub-images generated by all GPUs are
composed in parallel. For groups with opaque objects, sub-
images can be composed out-of-order, because the pixels closer
to the camera will always win. For the group of transparent
objects, we take advantage of the associativity of image
composition described in Section II-D: adjacent sub-images
are composed asynchronously as soon as they are available.
However, naïve distribution of draw commands, such as

using round-robin, can result in severe load imbalance among
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the GPUs. CHOPIN therefore includes a novel draw com-
mand scheduler (Section IV-D), which can load-balance draw
commands among the GPUs based on the dynamic execution
state. To mitigate network congestion and avoid unnecessary
stalls, we also propose a scheduler for sub-image composition
(Section IV-E), which ensures that any two GPUs can start
composition only when their sub-images are ready and neither
of them is composing with other GPUs.

Fig. 5 illustrates the potential of CHOPIN in an ideal system
where all intermediate results are buffered on-chip and the
inter-GPU links have zero latency and unlimited bandwidth:
parallel image composition offers up to 1.68× speedups (1.31×
gmean) over the best prior SFR solution (see Section V for
evaluation methodology).

IV. The CHOPIN Architecture
The high-level system architecture of CHOPIN is shown in
Fig. 6, and consists of extensions in both the software and
hardware layers.
In the software layer Ê, we divide draw commands into

multiple groups. At the beginning and the end of each group,
we insert two new API functions CompGroupStart() and
CompGroupEnd() to start and finish the image composition. We
also extend the driver by implementing a separate command
list for each GPU.

In the hardware layer, we connect multiple GPUs with high-
speed inter-GPU links Ë, similar to NVIDIA DGX [47, 49], and
present them to the OS as a single larger GPU. Draw commands
issued by the driver are distributed among the different GPUs by
a hardware scheduler Ì. After all draw commands of a single
composition group have finished, CompGroupEnd() is called
to compose the resulting sub-images. An image composition
scheduler Í orchestrates which pairs of GPUs can communicate
with one another at any given time.

A. Software Extensions
We first explain the semantics of extended graphics API
functions. CompGroupStart() is called before each composition

group starts: it passes the number of primitives and the
transparency information to the GPU driver, which will then
send these data to the GPU hardware. If there are transparent
objects in composition group, the GPU driver allocates extra
memory for sub-images in all GPUs, because transparent sub-
images cannot be composed with the background independently.
When function CompGroupEnd() is called, the GPU driver
sends a COMPOSE command to each GPU to start the
composition workflow, described in detail in Section IV-C.

The necessity of grouping draw commands is derived from
the various properties of each draw command. CHOPIN
assumes Immediate Mode Rendering (IMR), so we only group
consecutive draw commands in a greedy fashion; however,
more sophisticated mechanisms could potentially reorder draw
commands to create larger composition group at the cost of
additional complexity. When processing a sequence of draw
commands, a group boundary is inserted between two adjacent
draw commands on any of the following events:
1) swapping to the next frame,
2) switching to a new render target or depth buffer,
3) enabling or disabling updates to the depth buffer,
4) changing the fragment occlusion test function, or
5) changing the pixel composition operator.

Event 1 is straightforward, as we have to finish the current frame
before moving to the next one. Render targets (RTs) are a feature
that allow 3D objects to be rendered in an intermediate memory
buffer, instead of the framebuffer (FB); they can be manipulated
by pixel shaders in order to apply additional effects to the final
image, such as light bloom, motion blur, etc. A depth buffer (or
Z Buffer) is a memory structure that records the depth value of
screen pixels, and is used to compute the occlusion status of
newly incoming fragments. For both, Event 2 is necessary to
maintain inter-RT and inter-depth-buffer dependencies, where
the computing of future RTs and depth buffers depends on the
content recorded in the current one.
In graphics applications, some draw commands check the

depth buffer for occlusion verification without updating it. Not
inserting a boundary here could allow some fragments to pass
the depth test and update the frame buffer by mistake, leading
to an incorrect final image. We use Event 3 to create a clean
depth buffer before these draw commands begin.

Boundaries at Event 4 are needed because draw commands
use depth comparison operators to retain or discard incoming
fragments. Since CHOPIN distributes draw commands among
multiple GPUs, having multiple comparison functions (e.g.,
less-than and greater-than) in a single group can scramble the
depth comparison order and lead to incorrect depth verification.
A group boundary at Event 4 will guarantee that every time a
new comparison function is applied, the depth test will start
from a correct value.

As described in Section II-D, pixel blending of consecutive
draw commands is associative as long as a single blending
operator (e.g., over) is used. However, the associativity is
not transitive across different operators (e.g., mixed over and
additive operators are not associative), and the composition
of opaque and transparent objects also cannot be interleaved.
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Fig. 7. The workflow of each composition group.

Hence, whenever any draw command changes to a new operator
(i.e., Event 5), we create a group boundary.

B. Hardware Extensions
Besides inter-GPU communications, the main operations of
image composition are (a) reading local sub-image before
sending it out, and (b) composing pixels in destination GPUs.
As both of these functions are carried out by the ROP, they
do not require new functional components in CHOPIN.

However, since SFR (Split Frame Rendering) splits 2D screen
space into multiple regions and assigns each region to a specific
GPU, pixels must eventually be exchanged among GPUs after
sub-images are generated, we need a hardware component that
computes destination GPUs of individual pixels. We therefore
slightly extend the ROPs with a simple structure that distributes
pixels to different GPUs according to their screen positions.
We also require a draw command scheduler and an image

composition scheduler to address the problems of load imbal-
ance and network congestion, which are two main performance
bottlenecks of a naïve implementation of CHOPIN. We describe
them in Section IV-D and IV-E, respectively.

C. Composition Workflow
Fig. 7 shows the workflow of each composition group. When a
composition group begins, we first check how many primitives
(e.g., triangles) are included in this group Ê. If the number
of primitives is smaller than a certain threshold, we revert to
traditional SFR and duplicate all primitives in each GPU Ë.
This is a tradeoff between redundant geometry processing
and image composition overhead. For example, some draw
commands are executed to set up the background before real
objects are rendered; because these draw commands simply cut
a rectangle screen into two triangles, the geometry processing
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Fig. 8. Performance overhead of round-robin draw command scheduling
(normalized to the system which duplicates all primitives across GPUs).

overhead is much smaller than other graphics pipeline stages,
and the overhead of redundant geometry processing is also
much smaller than the cost of image composition. Although
this threshold is an additional parameter that must be set, our
sensitivity analysis results (see Fig. 22) show that the threshold
value does not substantially impact the performance, so this is
not a significant concern.

For each composition group that warrants parallel image com-
position, we first check whether the group contains transparent
objects. If so, the GPU driver needs to create extra render targets
for sub-images in each GPU Ì. This is necessary because
transparent objects cannot be merged with the background
until all sub-images have been composed — otherwise, the
background pixels will be composed multiple times, creating
an incorrect result. To protect the input order of transparent
primitives and achieve reasonable load balance at the same time,
we evenly divide draw commands and simply distribute the
same amount of continuous primitives across GPUs Í. While
more complex solutions exist, this simple workload distribution
is acceptable because, in current applications, only a small
fraction of draw commands are transparent. After a GPU has
finished its workload, we can begin to compose adjacent sub-
images asynchronously by leveraging associativity Î.

If the group has no transparent objects, CHOPIN dynamically
distributes draw commands with our proposed scheduler Ï;
in this case, it is not necessary to create extra render targets
because generated sub-images will overwrite the background
anyway. Finally, opaque sub-images are composed out-of-
order Ð by simply comparing their distances to the camera
(depth value); sub-image pixels which are closer to the camera
will be retained for final image composition.

D. The Draw Command Scheduler
Although the parallel image composition technique in CHOPIN
can avoid sequential inter-GPU synchronizations, the correct
final image can only be generated after all sub-images have
been composed; therefore, the slowest GPU will determine
the overall system performance. As Fig. 8 shows, simple draw
command scheduling, such as round-robin, can lead to severe
load imbalance and substantially impact performance.
To achieve optimal load balance, we would ideally like

to know the exact execution time of each draw command;
however, this is unrealistic before the draw command is actually
executed. Therefore, we need to approximately predict the draw
command running time. A complete heuristic for rendering
time estimation has been proposed in [62]: C = 21×#tv+22∗#pix,
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Fig. 10. Draw command scheduler microarchitecture.

where C is the estimated rendering time, #tv is the number of
transformed vertices, #pix is the number of rendered pixels,
and 21 and 22 are the vertex rate and pixel rate. Although
this heuristic considers both geometry and fragment processing
stages, the value of 21 and 22 can change dramatically across
draw commands, and we cannot use this approach directly.
OO-VR [65] samples these parameters on the first several draw
commands and uses them for the remainder of the rendering
computation; however, we have found that these parameters
vary substantially, and such samples form a poor estimate for
the dynamic execution state of the whole system. Other prior
work [10] instead uses the triangle count of each draw command
(which can be acquired from applications) as a heuristic to
estimate rendering time. However, dynamically keeping tracking
of all triangles throughout the graphics pipeline is complicated,
especially after a triangle is rasterized into multiple fragments.
Fortunately, as Fig. 9 shows, the triangle rate (i.e., cy-

cles/triangle) of the geometry processing stage is similar to
that of the whole graphics pipeline — this is similar to how
the instruction processing rate in a CPU frontend limits the
performance of the CPU backend. We therefore propose to use
the number of remaining triangles in the geometry processing
stage as an estimate of each GPU’s remaining workload. Every
time a draw command is issued by the GPU driver, we simply

Inter-GPU connections (NVLink, NVSwitch, or XGMI)
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CGID Ready Receiving Sending
Received 

GPUs

Sent

GPUs
CGID Ready Receiving Sending

Received 

GPUs

Sent

GPUs

5GPU0 T F T 001000105GPU0 T F T 00100010

5GPU1 T T F 000000005GPU1 T T F 00000000

5GPU2 T F F 100010005GPU2 T F F 10001000

4GPU3 F F F 000000004GPU3 F F F 00000000

Image Composition Scheduler

Fig. 11. Image composition scheduler microarchitecture.

Field Meaning
CGID Composition Group ID
Ready Ready to compose with others?

Receiving Receiving pixels from another GPU?
Sending Sending pixels to another GPU?
SentGPUs GPUs the sub-image has been sent to

ReceivedGPUs GPUs we have composed with

TABLE I
Fields in the image composition scheduler.

distribute it to the GPU which has the fewest remaining triangles
in geometry processing stage.
The microarchitecture of our draw command scheduler is

shown in Fig. 10. The main structure is a table, in which each
GPU has an entry to record the number of scheduled and
processed triangles in that GPU; the remaining triangle count
is the difference. The scheduled triangle count increments when
a draw command is scheduled to a GPU, while the processed
count increments as triangles finish geometry processing.

Fig. 10 also shows a running example of how the scheduler
operates. First, the GPU driver issues a draw command with
100 triangles Ê. Next, the draw command scheduler finds
that GPU2 currently has the fewest remaining triangles Ë.
The triangle count of this draw command is therefore added
to the number of triangles scheduled to GPU2 Ì, and the
scheduler distributes this draw command to GPU2 Í. Once
the triangles pass through the geometry processing stage in
graphics pipeline, the number of processed triangles for GPU2
is increased accordingly Î.

E. Image Composition Scheduler
Once each GPU has finished its workload, it can begin to
communicate with other GPUs for sub-image composition.
However, blind inter-GPU communication can result in the
congestion and under-utilization of interconnect resources (see
Section II-D). The most straightforward scheme, direct-send,
sends the screen regions to any other GPUs without knowing
if the destination GPU can accept it; if the target GPU is
still computing, the waiting inter-GPU messages will block
the interconnect. For example, assuming a situation where all
GPUs except GPU0 have finished their draw commands, so
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GPUs begin to send their sub-images to GPU0. Because GPU0
is still running, inter-GPU messages will be blocked in the
network. Even though GPUs could have communicated with
another GPU rather than GPU0, now they have to wait until
GPU0 is able to drain the network. Therefore, an intelligent
scheduling mechanism for image composition is necessary.

Our proposed composition scheduler, shown in Fig. 11, aims
to avoid stalls due to the GPUs that are still running their
scheduled draw commands or busy composing with other GPUs.
It records the composition status (Table I) of each GPU in a
table: the composition group ID (CGID) is used to distinguish
different groups, the Ready flag is set while a GPU generated
its sub-image and became ready to compose with others, and
the Receiving and Sending flags are used to indicate that a
GPU is busy exchanging pixels with another GPU. Finally,
SentGPUs and ReceivedGPUs record the GPUs with which a
GPU has already communicated in a bit vector, vector size is
same as the number of GPUs in the system.
Fig. 12 shows the image composition scheduler workflow.

Once a GPU has finished all draw commands and generated
a sub-image, we set its Ready flag and increment the CGID
by one to start a new composition phase Ê. We then check
the status of other GPUs to see if any available GPUs can
compose with each other. For groups of transparent objects Ë,
only adjacent GPUs are checked because transparent sub-images
cannot be composed entirely out-of-order (Section II-D); for
opaque groups, all GPUs are checkedÌ. Composition starts
only if the remote GPU (1) is ready to compose and running
in the same composition group (i.e., CGIDs are same), (2) has
not yet been composed with (i.e., not set in ReceivedGPUs),
and (3) is not sending pixels to another GPU.
As an example, consider the status in Fig. 11. We can see

that GPU0 and GPU2 have composed with each other, GPU3
is still running, and GPU1 just finished its workload and set its
Ready flag. At this moment, GPU1 can compose with GPU0,
so we set the Receiving flag of GPU1 and the Sending flag
of GPU0 to indicate that these two GPUs are busy Í. When
image composition starts, GPU0 will read its sub-image and
send out the region corresponding to GPU1. After these two
GPUs have finished composition, we will reset the Receiving
flag of GPU1 and the Sending flag of GPU0. Concurrently, we
will also add GPU0 into the ReceivedGPUs field of GPU1 and
add GPU1 into the SentGPUs field of GPU0 Î. This procedure
is repeated until all sub-images are composed. Finally, we reset
the table entry after a GPU has sent its sub-image to all other
GPUs and the sub-images of all other GPUs has also been
received Ï. The composition is finished once each GPU has
composed with all other GPUs and, for transparent sub-images,
the background.

F. Scheduler Implementation
In CHOPIN, both the draw command scheduler and image
composition scheduler are centralized, and can be easily
implemented on interconnects like NVSwitch [43], already
widely used in modern multi-GPU platforms [47, 49, 50].
Because the hardware status and scheduling information need
to be exchanged only infrequently and require little bandwidth,
scalability is not an issue (see Section VI-D).
In this paper, we opt to implement both schedulers in

hardware. This is because they rely on dynamic execution
state information — such as the current remaining workload
and the current busy/working status for each GPU — that
is not available in host-side software. Nevertheless, it also
would be possible to expose this hardware state information to
software and manage scheduling in software (e.g., in the GPU’s
command processor). Indeed, our implementation serves as a
proof-of-concept for such schedulers. We leave the exploration
and analysis of the full scheduler design space to future work.

V. Methodology
We evaluate CHOPIN by extending ATTILA [19, 39], a cycle-
level GPU simulator which implements a wide spectrum of
graphics features present in modern GPUs. Unfortunately, the
latest ATTILA is designed to model an AMD TeraScale2
architecture [33], and cannot be configured to reflect the latest
NVIDIA Volta [48] or Turing [44] systems; therefore, to fairly
simulate the performance of different SFR implementations,
we scale down system parameters, such as the number of SMs
and ROPs, accordingly (Table II). Similar simulation strategies
have been widely used in related prior work [63, 64, 65, 66].
We extend the GPU driver for issuing draw commands and
hardware register values to different GPUs. Similar to the
existing NVIDIA DGX system [47, 49], we model the inter-
GPU links with point-to-point connections between GPU pairs,
with a default bandwidth and latency of 64GB/s and 200 cycles.

As benchmarks, we use eight single-frame traces as shown
in Table III, which we manually annotate to insert the new
API functions CompGroupStart() and CompGroupEnd() at
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Structure Configuration
GPU frequency 1GHz
Number of GPUs 8
Number of SMs 64 (8 per GPU)
Number of ROPs 64 (8 per GPU)

SM configurations 32 shader cores per SM
4 texture units

L2 Cache 6MB in total

DRAM 2TB/s, 8 channels
8 banks per channel

Composition group 4096# primitives threshold
Inter-GPU bandwidth 64GB/s (uni-directional)
Inter-GPU latency 200 cycles

TABLE II
Simulated architecture configurations.

Benchmark Abbr. Resolution # Draws # Triangles
Call of Duty 2 cod2 640 × 480 1005 219,950

Crysis cry 800 × 600 1427 800,948
GRID grid 1280 × 1024 2623 466,806

Mirror’s Edge mirror 1280 × 1024 1257 381,422
Need for Speed: nfs 1280 × 1024 1858 534,121Undercover
S.T.A.L.K.E.R.: stal 1280 × 1024 1086 546,733Call of Pripyat

Unreal ut3 1280 × 1024 1944 630,302Tournament 3
Wolfenstein wolf 640 × 480 1697 243,052

TABLE III
Benchmarks used for evaluation.

composition group boundaries. All of the benchmarks come
from the real-world games; the number of draw commands and
the number of primitives (triangles) and the target resolutions
vary across the set, and are shown in Table III.

Our SFR implementation splits each frame by interleaving
64 × 64 pixel tiles to different GPUs. Unlike AFR, SFR needs
to handle the read-after-write dependencies on render targets
and depth buffers. To ensure memory consistency, every time
the application switches to a new render target or depth buffer,
our simulation invokes an inter-GPU synchronization which
requires each GPU to broadcast the latest content of its current
render targets and depth buffers to other GPUs.
Apart from our CHOPIN system, we implement primitive

duplication, which we use as the baseline. We also implement
the best prior work GPUpd [28], modelling both optimizations:
batching and runahead execution1. To explore the upper bound
on the performance of each technique, we also idealize GPUpd
and CHOPIN in the same way: unlimited on-chip memory
for buffering intermediate results, zero inter-GPU latency, and
infinite inter-GPU bandwidth.

VI. Evaluation Results
In this section, we first compare the performance of CHOPIN,
primitive duplication, and GPUpd; we then explore the design
space via sensitivity analysis, and evaluate the hardware costs.

A. Performance Analysis
The overall performance of multiple SFR implementations is
shown in Fig. 13. The performance of GPUpd is comparable

1We created a best-effort realistic implementation of GPUpd as well as an
idealized variant.

cod2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

cry grid mirror nfs stal ut3 wolf GMean

GPUpd IdealGPUpd CHOPIN CHOPIN+CompSched IdealCHOPIN

Fig. 13. Performance of an 8-GPU system, baseline is primitive duplication
with configurations of Table II. (CompSched: composition scheduler)

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

cod2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

E
x
e
cu

ti
o
n
 C

y
cl

e
s

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

cry

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

grid

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

mirror

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

nfs

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

stal

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

ut3

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

wolf

D
u
p
lic

a
ti

o
n

G
P
U

p
d

C
H

O
P
IN

C
H

O
P
IN

+
C

H
O

P
IN

+
+

GMean

Normal Pipeline Primitive Distribution Primitive Projection Composition

Fig. 14. Execution cycle breakdown of graphics pipeline stages, normalize
all results to the cycles of primitive duplication. (CHOPIN+: CHOPIN + com-
position scheduler, CHOPIN++: IdealCHOPIN)

to conventional primitive duplication. Idealizing GPUpd (i.e.,
our best implementation of GPUpd) can slightly improve the
performance, but it remains substantially worse than CHOPIN.
With the image composition scheduler enabled, CHOPIN works
25% (up to 56%) better than primitive duplication, and only
4.8% slower than IdealCHOPIN.

Fig. 14 shows that the performance improvement of CHOPIN
comes mainly from the reduced synchronization overheads: for
GPUpd, this is the extra primitive projection and distribution
stages, while for CHOPIN this is the image composition stage
(e.g., the composition overhead of grid is large because it has
much bigger inter-GPU traffic load, see Fig. 17). Conventional
primitive duplication suffers because of redundant geometry
processing, which CHOPIN entirely avoids. Even though
GPUpd still performs some redundant computation in the
primitive projection stage, sequential inter-GPU primitive
exchange is its critical performance bottleneck.

CHOPIN avoids redundant geometry processing by distribut-
ing each draw command to a specific GPU, and substantially
reduces the overhead of inter-GPU synchronization through
parallel composition. With the image composition scheduler, the
composition cost is reduced even more by avoiding unnecessary
network congestion.

B. Impact on the Depth/Stencil Test

The performance of CHOPIN comes at the cost of slightly
increasing fragment processing overheads: because sub-images
are composed in parallel, some fragments that would be depth-
culled in a single GPU may still be processed because a GPU
in CHOPIN may not have the relevant occluding fragment.
However, we assume immediate-mode rendering (IMR), where
draw commands cannot be reordered. Programmers generally
arrange draw commands front-to-back to facilitate depth culling,
and this order is retained by CHOPIN/IMR. The performance
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impact of the additional fragment processing overhead is
therefore small (Fig. 15).
The early depth/stencil test is an important optimization

supported by most modern GPUs: fragments that do not pass
this test are culled and never passed to the shader. Fig. 15
shows that most fragments in our benchmarks that survive
to the shading step were subjected to (and passed) the early
depth/stencil test2. As Fig. 15 shows, CHOPIN increases the
number of fragments that pass (i.e., the additional work) only
slightly: the total number of fragments processed in ROPs
increases by only 3%, 5.4%, and 7.1% on average in systems
of 2, 4, and 8 GPUs (with 18% in the worst case for ut3 on
8 GPUs), which still permits overall CHOPIN speedups of
up to 1.56×. Because triangle counts grow much faster than
resolutions, the overall performance impact of depth/stencil
test will be even more limited in new workloads, which have
millions to billions of tiny triangles with sizes often smaller
than pixels [8].
To model hypothetical workloads with even more reduced

culling effectiveness, we also ran CHOPIN on ut3 while
artificially inflating this fragment overhead. To do this, we
randomly retained a fixed percentage of depth-culled fragments,
and processed them in the rest of the fragment pipeline as if
they had not been culled. Fig. 16 shows that this increases
the number of processed fragments, and slightly impacts
performance; however, we needed to retain nearly half of all
culled fragments to negate the performance benefits of CHOPIN.
This is much higher than what occurs in real workloads, where
most fragments are still depth-culled (because CHOPIN retains
the front-to-back order within each GPU), and primitive counts
grow faster than resolutions.

2In general, the early depth/stencil test is sometimes disabled so that the
fragment shader can discard fragments or overwrite their depth values.
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Fig. 18. Performance sensitivity to the update frequency of draw command
scheduler (baseline is primitive duplication with configurations from Table II).

C. Composition Traffic Load
To reduce network traffic, CHOPIN only exchanges screen
regions assigned to the GPUs that are communicating at any
given moment. We also filter out the screen tiles that are not
rendered by any draw commands, as they do not need to be
composed. As Fig. 17 shows, the average traffic load of image
composition is only 51.66MB. Fig. 14 shows that this does
not create a substantial execution overhead, especially with the
image composition scheduler enabled. The large traffic load
in grid is due to many large triangles that cover big screen
regions; we leave optimizing this to future work.

D. Scalability of Schedulers
Draw command scheduler. In most of our experiments, we
allowed the GPUs to update the draw command scheduler
statistics for every triangle processed, creating an average of
1.7MB traffic with 4B message size. To account for scaling
to much larger systems and much larger triangle counts,
however, we also investigated how a larger update interval
would affect the performance of CHOPIN. Fig. 18 sweeps this
update frequency from every triangle to every 1024 triangles
on an otherwise identical system; the average performance
improvement of CHOPIN drops very slightly from 1.25× to
1.22×. With updates every 1024 triangles and 4B messages, the
total update traffic load would be 4KB for 1 million triangles
and 4MB for 1 billion triangles.
Image composition scheduler. The image composition

scheduler receives notifications from GPUs at composition
boundaries that they are ready to accept work, and sends
notifications back to GPUs — 7 requests and 7 responses for
each GPU in an 8-GPU system, plus an 8th pair to compose
with the background — which results in (8+ 8) × 8× 4 = 512B
with 4B messages. The bandwidth cost of both schedulers is
negligible compared to sub-image frame content.

E. Sensitivity Analysis
To understand the relationship between our architectural param-
eters and the performance of CHOPIN, we performed sensitivity

718



2 GPUs
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

4 GPUs 8 GPUs 16 GPUs

GPUpd IdealGPUpd CHOPIN CHOPIN+CompSched IdealCHOPIN

Fig. 19. Performance sensitivity to number of GPUs (for each GPU count
configuration, baseline is primitive duplication with the same GPU count and
other settings as in Table II).
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Fig. 20. Performance sensitivity to inter-GPU link bandwidth (baseline is
primitive duplication with configurations of Table II).

studies across a range of design space parameters.
GPU count. Even though integrating more GPUs in a system

can provide abundant resources to meet the constantly growing
computing requirements, it also can impose bigger challenge
on inter-GPU synchronizations. As Fig. 19 shows, GPUpd
is constrained by the sequential primitive distribution, and
performance does not scale with GPU count. In contrast,
because CHOPIN parallelizes image composition, the inter-
GPU communication is also accelerated with more GPUs.
Therefore, the performance of CHOPIN is scalable and the
improvement versus prior SFR solutions grows as the number of
GPUs increases. Meanwhile, the image composition scheduler
becomes more effective when the GPU count is higher: this is
because naïve inter-GPU communication for image composition
can congest the network more frequently with more GPUs,
which is a bigger bottleneck for a larger system.

Inter-GPU link bandwidth and latency. Since inter-GPU
synchronization relies on the inter-GPU interconnect, we
investigated sensitivity to link bandwidth and latency. CHOPIN
performance scales with bandwidth (Fig. 20), unlike GPUpd.
Similarly, CHOPIN is not significantly affected by link latency
(Fig. 21), unlike GPUpd where latency quickly bottlenecks
sequential primitive exchange.
Composition group size threshold. This parameter makes

a tradeoff between the redundant geometry processing and
the image composition overhead: if the number of primitives
inside a composition group is smaller than a specific threshold,
CHOPIN reverts to primitive duplication (see Fig. 7). In theory,
this threshold could be important: if set too low, it might
not filter out most composition groups with few primitives,
and if set too high, we could lose the potential performance
improvement of parallel image composition. However, as
Fig. 22 shows, it turns out that the performance of CHOPIN is
not very sensitive to the configuration of this threshold value,
and this setting should be of little concern to programmers.
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Fig. 21. Performance sensitivity to inter-GPU link latency (baseline is primitive
duplication with configurations of Table II).
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Fig. 22. Performance sensitivity to the threshold of composition group size
(baseline is primitive duplication with configurations of Table II).

The main reason for the lack of sensitivity is that the
statistic distribution of composition group sizes is bimodal:
most composition groups have either a large number of triangles
(e.g., consecutive draw commands for objects rendering) or
very few triangles (e.g., background draw commands), and
many threshold settings will separate them. For example,
if the threshold is set as 4,096, CHOPIN will accelerate
6.5 composition groups on average, covering 92.44% of the
triangles in the entire application; increasing the threshold
to 16,384 will accelerate 5.25 composition groups, covering
89.83% triangles on average.

F. Hardware Costs
The draw command scheduler and image composition scheduler
constitute the main hardware cost of the CHOPIN system. In
an 8-GPU system, both schedulers have 8 entries. Each entry
in the draw command scheduler has two fields: the number of
scheduled triangles and the number of processed triangles. To
cover the requirements of most existing and future applications,
we conservatively allocate 64 bits for each field. Therefore, the
total size of draw command scheduler is 128 bytes.
As discussed in Section VI-E, with a group size threshold

of 4,096, up to 13 (6.5 on average) draw command groups will
trigger image composition, so we assume one byte is enough
to represent a CGID for the image composition scheduler.
The Ready, Receiving and Sending flags are all single bits.
SentGPUs and ReceivedGPUs are bit vectors with as many
bits as the number of GPUs in the system (for us, one byte).
Therefore, the total size of the image composition scheduler
in our implementation is 27 bytes.

G. Scaling to Modern and Future Games
Since the ATTILA simulation framework only supports an
older API (DirectX 9), we cannot directly evaluate very recent
workloads. We therefore used profiling in a commercial GPU
to determine how well sort-last rendering approaches like
CHOPIN might scale to future games.
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The key question is which part of the rendering pipeline
grows faster: fragment processing (because resolution increases)
or primitive processing (because the level of detail increases).
If fragment counts dominate growth, sort-first approaches like
GPUpd are better, since they do extra work in the primitive
processing phase but no extra work in the fragment processing
phase. If, on the other hand, primitive processing grows faster,
sort-last approaches like CHOPIN are better, since they do not
add any work to the primitive processing step.
We profiled two workloads from 2017 and 2020 using

NVIDIA Nsight [52] on an NVIDIA GTX 1060 GPU: the
Unigine Superposition benchmark from 2017 [61] and Crysis
Remastered [22], a game released in September 2020. Crysis
Remastered has an average of 12 million triangles per frame,
with an average primitive processing time of 11.57ms and an
average fragment processing time of 11.11ms, even in 1080p
— this is in contrast to 4 million triangles for Superposition,
and fewer than 1 million triangles for the older benchmarks
we used in this paper.

This shows that primitive processing is already outstripping
fragment processing. Indeed, primitive counts look likely to
scale dramatically: the Unreal Engine 5 announcement envisions
a billion triangles per frame in the near future [8]. These trends
favour sort-last schemes like CHOPIN.

H. Massive Multi-GPU Systems
As is, CHOPIN is applicable to NVIDIA DGX-scale sys-
tems [47, 49]. Systems which are significantly larger (e.g.,
1024 GPUs) can potentially reduce the benefit of CHOPIN,
because each GPU will only get very few draw commands
and will process more unnecessary fragments. However, it’s
not quite realistic to render single frames with 1024 GPUs, as
it can result in severe hardware underutilization. We believe
large-scale systems may need more complicated rendering
mechanisms, such as the combination of AFR and SFR. We
leave this to future work.

VII. Related Work
Multi-GPU Systems. The latest work in multi-GPU systems
is discussed in Section II-C. Most focuses on general-purpose
applications, rather than graphics rendering like CHOPIN.
GPUpd [28] and OO-VR [65] are two multi-GPU propos-
als that attempt to leverage modern, high-speed inter-GPU
connections. However, as discussed in Section III-A, GPUpd
is bottlenecked by a sequential inter-GPU primitive exchange
step, while CHOPIN composes sub-images in parallel. OO-
VR is a rendering framework to improve data locality in VR
applications, orthogonal to the problem of efficient image
composition for SFR that we address in this paper. Unlike OO-
VR, the draw command distribution in CHOPIN does not rely
on statically computed parameters; CHOPIN also includes an
image composition scheduler to make full use of the available
network resources.
NVIDIA’s SLI [45] attempts to balance the workload by

dynamically adjusting how the screen is divided among GPUs.
However, it still duplicates all primitives in every GPU, and

incurs the attendant overheads. Both DirectX 12 [6] and
Vulkan [4] expose multi-GPU hardware to programmers via
API, but relying only on this would require programmers to
have exact static knowledge of the workload (e.g., workload
distribution). CHOPIN can simplify programming and deliver
reliable performance through dynamic scheduling in hardware.
Parallel Rendering. Most SFR mechanisms were origi-

nally targeted at PC clusters. Among these, WireGL [26],
Chromium [27], and Equalizer [20] are high-level APIs which
can allocate workload among machines based on different
configurations. However, when the system is configured as
sort-first, they use CPUs to compute the destinations of each
primitive, and performance is limited by the poor computation
throughput of CPUs. When the system is configured as sort-
last, they assign one specific machine to collect all sub-images
from others for composition, which again creates a bottleneck.
In contrast, CHOPIN distributes draw commands to different
GPUs based on dynamic execution state, and all GPUs in the
system contribute to image composition in parallel.

To accelerate image composition, PixelFlow [37] and Pixel-
Planes 5 [23] implemented application-specific hardware, with
significant overheads. In contrast, CHOPIN takes advantage of
existing multi-GPU systems and high-performance inter-GPU
links, and incurs very small hardware costs. RealityEngine [9]
and Pomegranate [21] aim to improve load balancing by
frequently exchanging data before geometry processing, before
rasterization, and after fragment processing; however, these
complicated synchronization patterns are hard to coordinate,
and huge traffic loads can be imposed on the inter-GPU links.
Single-GPU Systems. Besides parallel rendering, significant

work has also been done on graphics processing in single
GPU or mobile GPU systems. By leveraging the similarity
between consecutive frames, Arnau et al. proposed fragment
memorization to filter out redundant fragment computation [14].
Rendering Elimination [13] shares the same observation of
similarity, but excludes redundant computation at the coarser
granularity of screen tiles. To verify fragment occlusion as
early as possible, Anglada et al. proposed early visibility
resolution, a mechanism that leverages the visibility information
obtained from a frame to predict the visibility of the next
frame [12]. Texture data consumes significant off-chip memory
bandwidth, so Xie et al. explored the use of processing-in-
memory to reduce texture memory traffic [64]. In contrast to
all these efforts, CHOPIN focuses on the efficient inter-GPU
synchronization of parallel rendering in multi-GPU systems.

VIII. Conclusion

In this paper, we introduce CHOPIN, a novel architecture for
split frame rendering in multi-GPU systems. CHOPIN is a sort-
last rendering scheme which distributes each draw command to
a unique GPU and avoids redundant geometry processing. By
leveraging the mathematical properties of image composition
and modern high-speed inter-GPU links, CHOPIN can perform
composition in parallel without requiring sequential inter-GPU
communication.
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CHOPIN includes a draw command scheduler to address
load imbalance, and an image composition scheduler to reduce
network congestion. Overall, CHOPIN outperforms the best
prior work by up to 1.56× (1.25× gmean), and — in contrast
to existing solutions — scales as the number of GPUs grows.
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