
HMG: Extending Cache Coherence Protocols Across
Modern Hierarchical Multi-GPU Systems

Xiaowei Ren†‡, Daniel Lustig‡, Evgeny Bolotin‡, Aamer Jaleel‡, Oreste Villa‡, David Nellans‡

†The University of British Columbia ‡NVIDIA
xiaowei@ece.ubc.ca {dlustig, ebolotin, ajaleel, ovilla, dnellans}@nvidia.com

Abstract—Prior work on GPU cache coherence has shown
that simple hardware- or software-based protocols can be more
than sufficient. However, in recent years, features such as multi-
chip modules have added deeper hierarchy and non-uniformity
into GPU memory systems. GPU programming models have
chosen to expose this non-uniformity directly to the end user
through scoped memory consistency models. As a result, there
is room to improve upon earlier coherence protocols that were
designed only for flat single-GPU hierarchies and/or simpler
memory consistency models.

In this paper, we propose HMG, a cache coherence protocol
designed for forward-looking multi-GPU systems. HMG strikes
a balance between simplicity and performance: it uses a readily-
implementable VI-like protocol to track coherence states, but
it tracks sharers using a hierarchical scheme optimized for
mitigating the bandwidth limitations of inter-GPU links. HMG
leverages the novel scoped, non-multi-copy-atomic properties
of modern GPU memory models, and it avoids the overheads
of invalidation acknowledgments and transient states that
were needed to support prior GPU memory models. On a
4-GPU system, HMG improves performance over a software-
controlled, bulk invalidation-based coherence mechanism by
26% and over a non-hierarchical hardware cache coherence
protocol by 18%, thereby achieving 97% of the performance
of an idealized caching system.

I. INTRODUCTION

As the demand for GPU compute continues to grow
beyond what a single die can deliver [1–4], GPU vendors
are turning to new packaging technologies such as multi-
chip modules (MCMs) [5] and new networking technolo-
gies such as NVIDIA’s NVLink [6] and NVSwitch [7]
and AMD’s xGMI [8] in order to build ever-larger GPU
systems [9–11]. Consequently, as Fig. 1 depicts, modern GPU
systems are becoming increasingly hierarchical. However,
due to physical limitations, the large bandwidth discrepancy
between existing inter-GPU links [6, 8] and on-package
integration technologies [12] can contribute to Non-Uniform
Memory Access (NUMA) behavior that often bottlenecks
performance. Following established principles, GPUs use
aggressive caching to recover some of the performance loss
created by the NUMA effect [5, 13, 14], and these caches
are kept coherent with lightweight coherence protocols that
are implemented in software [5, 13], hardware [14, 15], or a
mix of both [16].

GPU originally assumed that inter-thread synchronization
would be coarse-grained and infrequent, and hence they

GPM GPM

GPM GPM

D
R

A
M

MCM-GPU

Multi-GPU System

GPU GPU GPU

NVSwitchNVSwitch NVSwitchNVSwitch NVSwitchNVSwitch

GPU GPU GPU GPU

GPU

D
R

A
M

D
R

A
M

D
R

A
M

Figure 1: Forward-looking multi-GPU system. Each GPU
has multiple GPU modules (GPMs).

adopted a bulk-synchronous programming model (BSP) for
simplicity. This paradigm disallowed any data communica-
tion among Cooperative Thread Arrays (CTAs) of active
kernels. However, in emerging applications, less-restrictive
data sharing patterns and fine-grained synchronization are
expected to be more frequent [17–20]. BSP is too rigid and
inefficient to support these new sharing patterns.

To extend GPUs into more general-purpose domains, GPU
vendors have released very precisely-defined scoped memory
models [21–24]. These models allow flexible communication
and synchronization among threads in the same CTA, the
same GPU, or anywhere in the system, usually by requiring
programmers to provide scope annotations for synchroniza-
tion operations. Scopes allow synchronization and coherence
to be maintained entirely within a narrow subset of the
full-system cache hierarchy, thereby delivering improved
performance over system-wide synchronization enforcement.
Furthermore, unlike most CPU memory models, these GPU
models are now non-multi-copy-atomic: they do not require
that memory accesses become visible to all observers at the
same logical point in time. As a result, there is room for
forward-looking GPU cache coherence protocols to be made
even more relaxed, and hence capable of delivering even
higher throughput, than protocols proposed in prior work (as
outlined in Section III).

Previously explored GPU coherence schemes [5, 13–16, 25–
27] were well tuned for GPUs and much simpler than CPU
protocols, but few have studied how to scale these protocols
to larger multi-GPU systems with deeper cache hierarchies.
To test their efficiency, we simply apply the existing software

582

2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/20/$31.00 ©2020 IEEE
DOI 10.1109/HPCA47549.2020.00054

o
v
e
rf

e
a
t

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

M
in

iA
M

R

A
le

x
N

e
t

3.1 3.1 3.2

C
o
M

D

H
P
G

M
G

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

n
a
m

d
2

.1
0

re
sn

e
t

m
st

n
w

-1
6

K

ls
tm

3.4 3.5 4.0

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

3.7 3.6 4.4

b
fs

sn
a
p

R
N

N
_W

G
R

A
D

3.3 3.4 7.1

G
e
o
M

e
a
n

Non-Hierarchical SW Coherence Non-Hierarchical HW Coherence Idealized Caching w/o Coherence

Figure 2: Benefits of caching remote GPU data under three different protocols on a 4-GPU system with 4 GPMs per GPU,
all normalized to a baseline which has no such caching. The results show that existing protocols leave room for improvement
when extended to multiple GPUs.

and hardware coherence protocols GPU-VI [15] on a 4-
GPU system, in which each GPU consists of 4 separate
GPU modules (GPMs). These protocols do not account for
architectural hierarchy; we simply extend them as if the
system were a flat platform of 16 GPMs. As Fig. 2 shows,
in hierarchical multi-GPU systems, existing non-hierarchical
software and hardware VI coherence protocols indeed leave
plenty room for improvement; see Section III for details.
We therefore ask the following question: how do we extend
existing GPU coherence protocols across multiple GPUs
while simultaneously providing high-performance support for
flexible fine-grained synchronization within emerging GPU
applications, and without a dramatic increase in protocol
complexity?

We propose HMG, a hardware-managed cache coher-
ence protocol designed to extend coherence guarantees
across forward-looking Hierarchical Multi-GPU systems with
scoped memory consistency models. Unlike prior CPU and
GPU protocols that enforce multi-copy-atomicity and/or track
ownership within the protocol, HMG eliminates transient
states and/or extra hardware structures that would otherwise
be needed to cover the latency of acquiring write permis-
sions [15, 16]. HMG also filters out unnecessary invalidation
acknowledgment messages, since a write can be processed
instantly if multi-copy-atomicity is not required. Similarly,
unlike prior work that filters coherence traffic by tracking
the read-only state of data regions [14, 16], HMG relies
on precise but hierarchical tracking of sharers to mitigate
the performance impact of bandwidth-limited inter-GPU
links without adding unnecessary coherence traffic. As such,
HMG is able to scale up to large multi-GPU systems, while
nevertheless maintaining the simplicity and implementability
that made prior GPU cache coherence protocols popular [15].

Overall, this paper makes the following contributions:

• We study the architectural implications of extending
cache coherence protocols to multi-GPU systems. To
the best of our knowledge, this is the first study of
multi-MCM, multi-GPU hardware coherence under a
scoped, non-multi-copy-atomic memory model.

• We show that while it is possible to extend existing

software or hardware coherence protocols to multi-
GPU systems, performance is very inefficient without
mechanisms in place to exploit intra-GPU data locality
and mitigate the inter-GPU/inter-module bandwidth
constraints.

• We propose HMG, a hardware-managed cache co-
herence protocol for distributed L2 caches in hierar-
chical multi-GPU platforms. Our proposal not only
mitigates the majority of the inter-GPU bandwidth
related bottlenecks by improving intra-GPU data locality
with hierarchical sharer tracking, but also eliminates
unnecessary transient states and coherence messages
found in previous proposals. HMG delivers 97% of the
overall possible performance of an idealized system.

II. BACKGROUND

To avoid confusion around the term “shared memory”
which is used to describe scratchpad memory on NVIDIA
GPUs, we use “global memory” for the virtual address space
shared by all CPUs and GPUs in a system.

A. Hierarchical Multi-Module GPUs

Because the end of Moore’s Law is limiting continued
transistor density improvement, future multi-module GPU
architectures will consist of a hierarchy in which each GPU
is split into GPU modules (GPMs), as depicted in Fig. 1 [28].
Recent work has demonstrated the benefits of creating
GPMs in the form of single-package multi-chip modules
(MCMs) [5]. Researchers have explored the possibility of
presenting a large hierarchical multi-GPU system to users
as if it were a single large GPU [13], but mainstream GPU
platforms today largely just expose the hierarchy directly to
users so that they can manually optimize data and thread
placement and migration decisions.

The constrained bandwidth of the inter-GPM/GPU links
is the main performance bottleneck on hierarchical GPU
architectures. To mitigate this, both MCM-GPU and Multi-
GPU explorations have scheduled adjacent CTAs to the same
GPM/GPU to exploit inter-CTA data locality [5, 13]. These
proposals map each memory page to the first GPM/GPU that

583

touches it to increase the likelihood that caches will capture
locality. They also extended a conventional GPU software
coherence protocol to the L2 caches, and they showed that
it worked well for traditional bulk-synchronous programs.

More recently, CARVE [14] proposed to allocate a fraction
of local GPU DRAM as cache for remote GPU data, and
enforced coherence using a simple protocol filtered by
tracking whether data was private, read-only, or read-write
shared. However, as CARVE neither tracked sharers nor used
scopes, CARVE broadcast invalidation messages to all caches
for read-write shared data.

B. Emerging Programs Need Fine-Grained Communication

Nowadays, many applications contain fine-grained com-
munication between CTAs of the same kernel and/or of
dependent kernels [29–35]. For example, in RNNs, abundant
inter-CTA communication exists in the neuron connections
between continuous timesteps [36]. In the simulation of
molecule or neutron dynamics [34, 35], inter-CTA communi-
cation is necessary for the movement dependency between
different particles and different simulation timesteps. Graph
algorithms usually dispatch vertices among multiple CTAs
or kernels that need to exchange their individual update
to the graph for the next round of computing until they
reach convergence [4, 30]. We provide more details on the
workloads we study in this paper in Section VI. All these
applications can benefit from a hierarchical GPU system for
higher performance and from the scoped memory model for
efficient inter-CTA synchronization enforcement.

C. GPU Memory Model

Both CUDA and OpenCL originally supported a coarse-
grained bulk-synchronous programming model. Under this
paradigm, data sharing between threads of the same CTA
could be performed locally in the shared memory scratchpad
and synchronized using CTA execution barriers; but inter-
CTA synchronization was permitted only between dependent
kernel calls (i.e., where data produced by one kernel is
consumed by the following kernels). They could not, with
guaranteed correctness, perform arbitrary communication us-
ing global memory. While many GPU applications work very
well under a bulk-synchronous model with rare inter-CTA
synchronizations, it quickly becomes a limiting factor for the
types of emerging applications described in Section II-B.

To support data sharing more flexibly and more efficiently,
both CUDA and OpenCL have shifted from bulk-synchronous
models to more general-purpose scoped memory models [21–
24, 37]. By incorporating the notion of scope, these new
models allow each thread to communicate with any other
threads in the same CTA (.cta), the same GPU (.gpu),
and anywhere in the system (.sys)1. Scope indicates the set
of threads with which a particular memory access wishes to

1We use NVIDIA terminology in this paper. Equivalent scopes in HRF
are work-group, device, and system [24].

synchronize. Synchronization of scope .cta is performed in
the L1 cache of each GPU Streaming Multiprocessor (SM);
synchronizations of scope .gpu and .sys are processed
through the GPU L2 cache and via the memory hierarchy
of the whole system, respectively.

D. GPU Cache Coherence

Some GPU protocols advocate for strong memory models,
and hence they propose sophisticated cache coherence
protocols capable of delivering good performance [27]. Most
other GPU protocols enforce variants of release consistency
by invalidating possibly stale values in caches when perform-
ing acquire operations (implicitly including the start of a
kernel), and by flushing dirty data during release operations
(implicitly including the end of a kernel). Much of the
research in the area today proposes optimizations on top
of these basic principles. We broadly classify this work by
whether reads or writes are responsible for invalidating stale
data.

Among read-initiated protocols, hLRC [26] elided unnec-
essary cache invalidations and flushes by lazily performing
coherence actions when synchronization variables change reg-
istration. Furthermore, the recent proposals of DeNovo [16]
and VIPS [38] can protect read-only or private data from
invalidation. However, they incur additional overheads and/or
require software changes to convey region information for
read-only data, ownership tracking in word granularity, or
coarse-grained (memory page level)2 private/shared data
classification.

As for write-initiated cache invalidations, previous work
has observed that MESI-like coherence protocols are a poor
fit for GPUs [15, 25]. QuickRelease [25] reduced the overhead
of cache flush by enforcing the partial order of writes with a
FIFO. However, QuickRelease needs to partition the resources
required by reads and writes; it also broadcasts invalidations
to all remote caches. GPU-VI [15] is a simple yet effective
hardware cache coherence protocol, but it predated scoped
memory models and introduced extra overheads to enforce
multi-copy-atomicity, which is no longer necessary. Also,
GPU-VI was proposed for use within a single GPU, and
did not consider the added complexity of having various
bandwidth tiers.

III. THE NOVEL COHERENCE NEEDS OF
MODERN MULTI-GPU SYSTEMS

To scale coherence across multiple GPUs, the design
of HMG not only considers the architectural hierarchy of
modern GPU systems (Fig. 1), but also aggressively takes
advantage of the latest scoped memory models (Section II-C).
Before diving into the details of HMG, we first describe our
main insights below.

2GPUs need large pages (e.g., 2MB) to ensure high TLB coverage. Smaller
pages can cause severe TLB bottlenecks [39].

584

o
v
e
rf

e
a
t

0%

25%

50%

75%

100%

%
 o

f
p
o
ss

ib
ly

 r
e
d
u
ce

d
p
e
e
r

G
P
U

 l
o
a
d
s

M
in

iA
M

R

A
le

x
N

e
t

C
o
M

D

H
P
G

M
G

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

n
a
m

d
2

.1
0

re
sn

e
t

m
st

n
w

-1
6

K

ls
tm

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

b
fs

sn
a
p

R
N

N
_W

G
R

A
D

A
v
g

Figure 3: Percentage of inter-GPU loads destined to addresses
accessed by another GPM in the same GPU.

A. Extending Coherence to Multiple GPUs

As described in Section II-D, prior GPU coherence
protocols mainly focused on mechanisms that mitigate the
impact of bulk cache invalidations. However, as Fig. 2 shows,
even fine-grained hardware VI cannot close the gap between
what non-hierarchical protocols achieve and an idealized
caching scenario. In future multi-GPUs, larger shared L2
caches will only amplify the cost of coarse-grained cache
invalidations and of reloading invalidated data from remote
GPUs via bandwidth-limited links. Indeed, Fig. 3 shows
that it is common for multiple GPMs on the same GPU to
redundantly access a common range of addresses stored on
remote GPUs. We therefore build HMG as a hierarchical
protocol capable of being extended across multiple GPUs.

There has been much research into hierarchical cache
coherence for CPUs. However, unlike GPUs, CPUs usually
enforce a stronger memory model (e.g., TSO) and have
much stricter latency requirements. As such, CPU coherence
protocols such as MESI track ownership to exploit write
data locality [40–42]. Many transient states are added to
reduce the coherence stalls, resulting in prohibitive veri-
fication complexity [43]. Industrial products implemented
more aggressive optimizations. For example, Sun’s WildFire
had special OS support for memory page replication and
migration [44]. Intel’s Skylake introduced IO directory cache
and HitMe cache to reduce memory access latency [42].
These complexities are appropriate for latency-bound CPUs,
but GPUs permit far more relaxed memory behavior, and
hence HMG shows that the costs of such CPU-like protocols
remain unnecessary for multi-GPUs.

B. Leveraging GPU Weak Memory Models

Besides the change of hardware architecture, scoped
GPU memory models also inform the design of a good
GPU coherence hierarchy. While non-scoped CPU memory
models require all memory accesses to be kept coherent,
GPU memory models that do explicitly expose scopes
as part of the programming model require coherence to
be enforced only at synchronization boundaries, and only
with respect to other threads in the scope in question. The
NVIDIA GPU memory model makes this relaxed nature of
coherence very explicit [21]. A common pattern in multi-GPU

applications will be for CTA or kernels running on a single
GPU to synchronize with each other first, and with kernels
on other GPUs less frequently. Such patterns rely heavily
on the comparative efficiency of .gpu scope over .sys
scope; while some prior work has concluded that scopes are
unnecessary within a single GPU [16], the latency/bandwidth
gap between the broadest and narrowest scope is an order
of magnitude larger in multi-GPU environments.

Furthermore, although some prior work has proposed
multi-copy-atomic memory models for GPUs [45], recent
GPU scoped memory models have since formalized the lack
of such a requirement [21, 24]. Loosely speaking, multi-
copy-atomicity requires memory to behave as if it were
a single atomic unit, with only thread-private buffering
allowed between cores and memory. As GPUs share an
L1 cache across an SM, GPUs today are not multi-copy-
atomic. Multi-copy-atomicity also can create apparent delays
for subsequent memory accesses. Most CPUs enforce multi-
copy-atomicity using sophisticated coherence protocols with
many transient states and by using out-of-order execution
and speculation to hide the latency overheads. Some prior
studies have found that single-GPU coherence protocols can
also tolerate multi-copy-atomicity. For example, to reduce
stalls, GPU-VI [15] added 3 and 12 transient states and 24
and 41 coherence state transitions in the L1 and L2 caches,
respectively. In multi-GPU environments, however, the round
trip time to remote GPUs is an order of magnitude larger and
would put significantly increased pressure on the coherence
protocol’s ability to hide the latency. Instead, by leveraging
non-multi-copy-atomicity, HMG eliminates transient states
and invalidation acknowledgments altogether.

IV. BASELINE NON-HIERARCHICAL
CACHE COHERENCE

We now describe how a non-hierarchical cache coher-
ence (NHCC) protocol can be optimized for modern weak
GPU memory models. Like most scoped protocols, NHCC
propagates synchronization memory accesses to different
caches according to the user-provided scope annotations. As
compared to GPU-VI [15], NHCC eliminates all transient
states and most invalidation acknowledgments. However, it
does not take the architectural hierarchy into account. As
such, it will serve as our baseline during our later evaluations.
In the next section, we will extend NHCC with a notion of
hierarchy so that it scales better on larger multi-GPU systems
like Fig. 1.

A. Architectural Overview

A high-level diagram of our baseline single-GPU architec-
ture for NHCC is shown in Fig. 4. We assume L1 caches
remain software-managed and write-through, as in GPUs
today. Each GPU module (GPM) has an L2 cache that holds
both local and remote-GPM DRAM accesses contending for
cache capacity with a typical replacement policy such as

585

GPM1SMs + L1 $ SMs + L1 $

SMs + L1 $ SMs + L1 $ GPM3

D
R

A
M

GPM2

GPM0

X

B

A

R

X

B

A

R

X

B

A

R

X

B

A

R

L2 $L2 $

L2 $L2 $

L2 $L2 $

L2 $L2 $

D
R

A
M

D
R

A
M

D
R

A
M

Figure 4: Future GPUs will consist of multiple GPU modules
(GPMs). For example, each GPM might be a chiplet in a
single package.

Data Cache Data Cache

Coherence

Directory
Data Cache

Coherence

Directory

Data CacheData Cache

Coherence

Directory
Data Cache

Coherence

Directory

L2 in GPM0 L2 in GPM1

L2 in GPM2 L2 in GPM3

Cached A
Cached BCached B

Cached ACached A

V:A:[GPM2, GPM3]

V:B:[GPM1]
Cached ACached A

Coherence directory entry format is State:Addr:[Sharers]

Cached C

Home of A Home of C

Home of B

Figure 5: NHCC coherence architecture. The dotted yellow
boxes are the L2 caches from Fig. 4. The shaded gray cache
lines and directory entries indicate lines for which the GPM
in question is the home node.

least-recently-used (LRU). To support hardware inter-GPM
coherence, one GPM in the system is chosen by some hash
function as the home node for any given physical address.
The home node always contains the most up-to-date value
at each memory location.

Like many protocols, NHCC attaches an individual direc-
tory to every L2 cache within each GPM. The coherence
directory is organized as a traditional set-associative structure.
Each directory entry tracks the identity of all GPM sharers,
along with coherence state. Like GPU-VI [15], each line
can be tracked in one of two stable states: Valid and Invalid.
However, unlike GPU-VI, NHCC does not have transient
states, and it requires acknowledgments only for release
operations. Non-synchronizing stores (i.e., the vast majority)
do not require acknowledgments in NHCC.

We assume a non-inclusive inter-GPM L2 cache architec-
ture to enable data to be cached freely across the different
GPMs. Fig. 5 shows an example in which GPM0 serves as

the home node for address A. Other GPMs may cache the
value at A locally, but GPM0 maintains the authoritative
copy. In the same figure, address B is cached in GPM1,
even though GPM3 (the home node for B) is not caching
B. Similarly, data can be cached in the home node only, as
with address C in our example in Fig. 5.

In NHCC, explicit coherence maintenance messages (i.e.,
cache invalidations) are sent only in two cases: when there
is read-write sharing between CTAs on different GPMs, and
when there is a directory capacity eviction. The fact that
most memory accesses incur no coherence overhead ensures
that the GPU does not deviate from peak throughput in the
GPU common case where data is either read-only or CTA-
private. We measure the impact of coherence messages in
Section VII.

To explain the basics of NHCC, we track the life of a
memory reference as an example. First, a memory access
from the SM queries the L1 cache. Upon a L1 miss or write,
the request is routed to the local GPM L2 cache. If the
request misses in the L2 (or writes to L2, again assuming a
write-through policy), the address is checked to determine if
the local GPM is the home node for this reference. If so, the
request is routed to local DRAM. Otherwise, the request is
routed to the L2 cache of the home node via the inter-GPM
links. The request may then hit in the home node L2 cache,
or it may get routed through to that particular GPM’s off-chip
memory. We provide full details below.

B. Coherence Protocol Flows in Detail

Table I details the full operation of NHCC. In this table,
“local” refers to operations issued by the same GPM as the
L2 cache which is handling the request. “Remote” requests
are those originally issued by other GPMs. We walk through
the entries in the table below.

Local Loads: When a local load request reaches the local
L2 cache partition, if it hits, a reply is sent back to the
requester directly. If the request misses, the next destination
depends on where the data is mapped by the address hash
function. If the local L2 cache partition happens to be the
home node for the address being accessed, the request will be
sent to DRAM. Otherwise, the load request will be forwarded
to the home node. Loads with .gpu or .sys scope must
always miss in the L1 cache and in the non-home L2 caches
to guarantee forward progress.

Local Stores: Depending on L2 design, local stores may
be stored as dirty data in the L2 cache, or alternatively
they may be written through and stored as clean data in
the L2 cache. All stores with scope greater than .cta (i.e.,
.gpu and .sys) must be written through in order to ensure
forward progress. Data which is written back or written
through the L2 is sent directly to DRAM if the local L2
cache is the home node for the address in question, or it
is relayed to the home node otherwise. If the local GPM
is the home node and the coherence directory has recorded

586

State Local Ld Local St/Atom Remote Ld Remote St/Atom Replace Dir Entry Invalidation
I - - add s to sharers, →V add s to sharers, →V N/A -

V - inv all sharers, →I add s to sharers add s to sharers, inv all sharers, →I forward inv to all sharers
inv other sharers (HMG only), → I

Table I: NHCC and HMG coherence directory transition table. s refers to the sender of the message.

any sharers for the address in question, then these sharers
must be notified that the data has been changed. As such,
a local store triggers an invalidation message being sent to
each sharer. These invalidations propagate in the background,
off the critical path of any subsequent reads. There are no
invalidation acknowledgments.

Remote Loads: When a remote load arrives at the local
home L2 cache, it either hits in the cache and returns data
to the requester, or it misses and forwards the request to
DRAM. The coherence directory also records the ID of the
requesting node. If the line is already being tracked, the
requesting ID is simply added as an additional sharer. If the
line is not being tracked yet, a new entry is allocated in the
directory, possibly by evicting another valid entry (discussed
further below).

Remote Stores: Remote stores that arrive at a home L2
are cached and written through or written back to DRAM,
depending on the configuration of the L2. Since the requesting
GPM may also be caching the stored data, the requester is
recorded as a sharer. Since the data has been changed, all
other sharers should be invalidated.

Atomics and Reductions: Atomic operations must always
be performed at the home node L2. From a coherence
transition perspective, these operations are treated as stores.

Invalidations: Upon receiving an invalidation request, any
local clean copy of the address in question is invalidated. No
acknowledgment needs to be sent.

Directory Entry Eviction/Replacement: Because the
coherence directory is implemented as a set-associative cache,
there may be entry evictions due to capacity and conflict
misses. To ensure correctness, invalidation messages must be
sent to all sharers of the entry that is being evicted. As with
invalidations triggered by stores, these invalidations propagate
in the background and do not require acknowledgments to
be sent in return.

Acquire: Acquire operations greater than .cta scope
(i.e., .gpu and .sys) invalidate the entire local L1 cache,
following software coherence practice. However, they do not
propagate past the L1 cache, as L2 coherence in GPMs is
now maintained using NHCC.

Release: Release operations trigger a writeback of all
dirty data to the respective home nodes, if writeback caches
are being used. Releases also ensure completion of any
write-through operations and invalidation messages that are
still in flight. Release operations greater than .cta scope
are propagated through the local L2 to all remote L2s to
ensure that all invalidation messages have arrived at their
destinations. Once this step is complete, each remote L2
sends back an acknowledgment for the release operation

itself. The local L2 then collects these acknowledgments and
returns a single response to the original requester.

Cache Eviction: Two design options are possible upon
cache line eviction. First, a clean cache line being evicted
from an L2 cache in a non-home GPM could send a
downgrade message to the home node. This allows the home
node to delete the remote node as a sharer and will potentially
save an invalidation message from being sent later. However,
this is not required for correctness. The second option is
to have valid clean cache lines get silently evicted. This
eliminates the overhead of the downgrade message, but it
triggers an unneeded invalidation message upon eventual
eviction of the coherence directory entry. Optionally, dirty
cache lines being evicted and written back can use a new
message type indicating that the data must be updated but
that the issuing GPM need not be tracked as a sharer going
forward. Again, this optimization is not strictly required for
correctness, but may be useful in implementations using
writeback caches.

V. HIERARCHICAL MULTI-GPU
CACHE COHERENCE

Like most prior work, NHCC is designed for single-GPU
scenarios and does not take the hierarchy between intra- and
inter-GPU connections into account. This becomes a problem
as we try to extend protocols like NHCC to multiple GPUs,
as inter-GPU bandwidth limitations become a bottleneck.

To better exploit intra-GPU data locality, we propose a
hierarchical multi-GPU (HMG) cache coherence protocol
that extends NHCC to be able to take advantage of the
type of locality that Fig. 3 highlights. The HMG protocol
fundamentally enables multiple cache requests from individ-
ual GPMs to be coalesced and/or cached within a single
GPU before traversing the lower-bandwidth inter-GPU links,
thereby saving bandwidth and energy.

A. Architectural Overview

HMG is composed of two layers. The first layer is designed
for intra-GPU caching, while the second layer is targeted at
optimizing memory request routing in inter-GPU settings. For
the intra-GPU layer, we define a GPU home node for each
given address within each individual MCM-GPU. An MCM-
GPU home node manages inter-GPM coherence using NHCC
described in Section IV. Using the intra-GPU coherence layer,
data that is cached within a MCM-GPU can be consumed
by multiple GPMs on that GPU without consulting a remote
GPU.

We define one of the GPU home nodes for each address to
be the system home node. The choice of system home node

587

Data Cache Data Cache

Coherence

Directory

Data CacheData Cache

L2 in GPM0 L2 in GPM0

L2 in GPM1 L2 in GPM1

Cached A Cached A

Cached B

V:A:[GPU1]

V:B:[GPM0]

Cached B

GPU0 GPU1

Inter-GPM Network Inter-GPM Network

Inter-GPU

Cached Data GPU Home Sys Home

Sys Home of A GPU Home of A

Sys Home of BGPU Home of B

(a) Before: GPU0:GPM0 is about to load address B

Data Cache Data Cache

Coherence

Directory

Data CacheData Cache

L2 in GPM0 L2 in GPM0

L2 in GPM1 L2 in GPM1

Cached A Cached A

Cached B

Cached BV:A:[GPU1]

V:B:[GPU0, GPM0]
Cached B

V:B:[GPM0]

Cached B

GPU0 GPU1

Inter-GPM Network Inter-GPM Network

Inter-GPU

Cached Data GPU Home Sys Home

Sys Home of A GPU Home of A

Sys Home of BGPU Home of B

(b) After: B is cached in the L2 of the GPU0 home node for B as
well as in the L2 of the original requester

Figure 6: Hierarchical coherence in multi-GPU systems.
Loads are routed from the requesting GPM to the GPU home
node, and then to the system home node, and responses are
returned and cached accordingly.

can be made using any NUMA page allocation policy, such
as first touch page placement, NVIDIA Unified Memory [37],
static distribution, or any other reasonable heuristic. Among
multiple GPUs, sharers are tracked by the directory using
a hierarchy-aware variant of the NHCC directory design.
Specifically, each GPU home node will track any sharers
among other GPMs in the same GPU. Each system home
node will track any sharers among other GPUs, but not
individual GPMs within these other GPUs. For an M-GPM,
N-GPU system, each directory entry will therefore need to
track as many as M +N − 2 sharers.

The hierarchical caching mechanism of an example two-
GPU system is shown in Fig. 6. Each GPU is shown with
only two GPMs for brevity, but the protocol itself can extend
to an arbitrary number of GPUs, with an arbitrary number
of GPMs per GPU. In Fig. 6(a), the system home node of
address A is the L2 cache residing in GPU0:GPM0. This
particular L2 cache also serves as the GPU home node for the

same address within GPU0. The L2 cache in GPU0:GPM1
is kept coherent with the L2 cache in GPU0:GPM0 using
the intra-GPU protocol layer. The L2 cache in GPU1:GPM0
serves as the GPU1 home node for address A, and it is
kept coherent with the L2 cache in GPU1:GPM1 using the
intra-GPU layer. Both GPU home nodes are kept coherent
using the inter-GPU protocol layer.

Furthermore, suppose that from the state shown in Fig. 6(a),
GPU0:GPM0 wants to load address B, and the system home
node for address B is mapped to GPU1:GPM1. GPU0:GPM1
is the GPU0 home node for B, so the load request propagates
from GPU0:GPM0 to GPU0:GPM1 (the GPU home node),
and then to GPU1:GPM1 (the system home node). When
the response is sent back to the requester, GPU0 (but not
GPU0:GPM0 or GPU0:GPM1) is recorded as a sharer by
the directory of the system home node GPU1:GPM1, and
GPU0:GPM0 is recorded as a sharer by the directory of the
GPU0 home node GPU0:GPM1, as shown in Fig. 6(b).

B. Coherence Protocol Flows in Detail

HMG behaves similarly to Table I but adds the single
extra transition shown in Table I. No extra coherence states
are added. We highlight the important differences between
NHCC and HMG as follows.

Loads: Loads progress through the cache hierarchy from
the local L2 cache, to the GPU home node, to the system
home node. Specifically, loads that miss in the GPM-local
L2 cache are routed to the GPU home node, unless the GPM-
local L2 cache is already the GPU home node. From there,
loads that miss in the GPU home node are routed to the
system home node, unless the GPU home node is also the
system home node. Loads that miss in the system home node
are routed to DRAM.

Non-synchronizing loads (i.e., the vast majority) and loads
with .cta scope can hit in all caches. However, loads with
.gpu scope must miss in all caches prior to the GPU home
node. Loads with .sys scope must also miss in the GPU
home node; they may only hit in the system home node.

Loads propagating from the GPU home node to the system
home node do not carry information about the GPM that
originally requested the data. Because this information is
already stored by the GPU home node, it would be redundant
to store it again in the directory of the system home node.
Instead, invalidations are propagated to sharers hierarchically
as described below.

Stores: Stores are routed through a similar hierarchy as
they write-through and/or write-back. Specifically, stores
propagating past the GPM-local L2 cache are routed to the
GPU home node (unless the GPM-local L2 is already the
GPU home node), and stores propagating past the GPU
home node are routed to the system home node (unless the
GPU home node is already the system home node). Stores
propagating past the system home node are written to DRAM.
Similar to loads, stores or write-back/write-through operations

588

propagating from the GPU home node to the system home
node carry only the GPU identifier, not the identifier of the
GPM within that GPU.

Stores must be written through at least to the home node for
the scope in question: the L1 cache for non-synchronizing
and .cta-scoped stores, the GPU home node for .gpu-
scoped stores, and the system home node for .sys-scoped
stores. This ensures that synchronization operations will make
forward progress.

Atomics and Reductions: Atomics are always performed
in the home node for the scope in question and they continue
to be treated as stores for the purposes of coherence protocol
transitions, just as in NHCC. Once performed at the home
node, responses are propagated back to the requester just
as load responses are handled and the result is stored as
a dirty line or written through to subsequent levels of the
cache hierarchy, just as a store would be. For example, the
result of a .gpu-scoped atomic read-modify-write operation
performed in the GPU will be written through to the system
home node, in systems which configure the GPU home node
to be write-through for stores.

Invalidations: Because sharers are tracked hierarchically,
invalidations sent due to stores and directory evictions must
also propagate hierarchically. Invalidations sent from the
system or GPU home node to other GPMs in the same GPU
are processed and dropped without acknowledgment, just as
in NHCC. However, in HMG any invalidations received by
a GPU home node from the system home node must also be
propagated to any and all GPM sharers within the same GPU.
This is the special transition shown in Table I for HMG.

Acquire: As before, .cta-scoped acquire operations
invalidate the local L1 cache, but nothing more, as all levels
of L2 cache are being kept hardware-coherent.

Release: Release operations trigger writeback of all dirty
data, at least to the home node for the scope being released.
They also still ensure completion of any write-through
operations and invalidation messages still in flight to the
home node for the scope in question. A .gpu-scoped release
operation, however, need not flush all write-back operations
across the inter-GPU network before returning a completion
acknowledgment to the original requester.

VI. EVALUATION METHODOLOGY

To evaluate HMG, we use a proprietary industrial simulator
to model a multi-GPU system described in Table II. The
simulator is driven by program traces that record instructions,
registers, memory addresses, and CUDA events. All micro-
architectural scheduling, and thus time for execution, is
dynamic within the simulator and respects functional de-
pendencies such as work scheduling, barrier synchronization,
memory access latencies. However, it cannot accurately
model spin-lock synchronizations in memory. While this type
of communication is legal on current NVIDIA hardware, it
is not yet widely adopted due to performance overheads and

Structure Configuration
Number of GPUs 4
Number of SMs 128 per GPU, 512 in total
Number of GPMs 4 per GPU
GPU frequency 1.3GHz
Max number of warps 64 per SM
OS Page Size 2MB
L1 data cache 128KB per SM, 128B lines
L2 data cache 12MB per GPU

128B lines, 16 ways
L2 coherence directory 12K entries per GPU module

each entry covers 4 cache lines
Inter-GPM bandwidth 2TB/s per GPU, bi-directional
Inter-GPU bandwidth 200GB/s per link, bi-directional
Total DRAM bandwidth 1TB/s per GPU
Total DRAM capacity 32GB per GPU

Table II: Configuration of simulated architecture.

104
106
108
1010

104 106 108 1010

Si
m

.c
yc

le
s

Real HW cycles

Our simulator GPGPU-Sim

100
102
104
106

104 106 108 1010W
al

l
C

lo
ck

(s
)

Sim. cycles

Figure 7: Simulator correlation vs. a NVIDIA Quadro GV100
and simulation runtime for our simulator and GPGPU-
Sim [46–49].

not present in our suite of workloads. Simulating the system-
level effects of fine-grained synchronization, in reasonable
time, without sacrificing fidelity [20, 50] remains an open
problem for GPU researchers.

Fig. 7 shows our simulator correlation versus a NVIDIA
Quadro-GV100 GPU across a range of targeted microbench-
marks, public, and proprietary workloads. Fig. 7 also shows
the corresponding data for GPGPU-Sim, a widely-used
academic GPU architecture simulator [51], with simulations
capped at running for about one week. Our simulator has
a correlation coefficient of 0.99 and average absolute error
of 0.13. This compares favorably to GPGPU-Sim (at 0.99
and 0.045, respectively), as well as other recently reported
simulator results [52] while being significantly faster, which
allows us to run forward-looking GPU configurations more
easily. Our simulator inherits the contiguous CTA scheduling
and first-touch page placement polices from prior work [5, 13]
to maximize data locality in memory.

To perform our evaluation, we choose a public subset of
workloads (shown in Table III) [29–35] that have sufficient
parallelism to fill a 4-GPU system. These benchmarks utilize

589

o
v
e
rf

e
a
t

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

M
in

iA
M

R

A
le

x
N

e
t

3.1 3.1 3.2 3.2 3.2

C
o
M

D

H
P
G

M
G

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

n
a
m

d
2

.1
0

re
sn

e
t

m
st

n
w

-1
6

K

ls
tm

3.4 3.5 3.7 4.1 4.0

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

3.7 3.6 4.4 4.3 4.4

b
fs

sn
a
p

R
N

N
_W

G
R

A
D

3.3 3.4 7.0 7.2 7.1

G
e
o
M

e
a
n

Non-Hierarchical SW Coherence Non-Hierarchical HW Coherence Hierarchical SW Coherence HMG Coherence Idealized Caching w/o Coherence

Figure 8: Performance of a 4-GPU system, where each GPU is composed of 4 GPMs. Performance is normalized to a 4-GPU
system that disallows caching of remote GPU data. Five configurations are evaluated: software protocols with non-hierarchical
and hierarchical implementations, NHCC, HMG, and ideal caching without coherence overhead.

Benchmark Abbrev. Footprint
cuSolver cuSolver 1.60 GB
HPC CoMD-xyz49 CoMD 313 MB
HPC HPGMG HPGMG 1.32 GB
HPC MiniAMR-test2 MiniAMR 1.80 GB
HPC MiniContact MiniContact 246 MB
HPC namd2.10 namd2.10 72 MB
HPC Nekbone-10 Nekbone 178 MB
HPC snap snap 3.44 GB
Lonestar bfs-road-fla bfs 26 MB
Lonestar mst-road-fla mst 83 MB
ML AlexNet conv2 AlexNet 812 MB
ML GoogLeNet conv2 GoogLeNet 1.15 GB
ML lstm layer2 lstm 710 MB
ML overfeat layer1 overfeat 618 MB
ML resnet resnet 3.20 GB
ML RNN layer4 DGRAD RNN DGRAD 29 MB
ML RNN layer4 FW RNN FW 40 MB
ML RNN layer4 WGRAD RNN WGRAD 38 MB
Rodinia nw-16K-10 nw-16K 2.00 GB
Rodinia pathfinder pathfinder 1.49 GB

Table III: Benchmarks used for evaluation.

scoped and/or inter-kernel synchronization patterns. This
ensures that performance does not regress on traditional
workloads even as we accelerate workloads with more fine-
grained sharing. Specifically, cuSolver, namd2.10, and
mst use .gpu-scoped synchronization explicitly, others
utilize inter-kernel communication by launching frequent
dependent kernels, and a few are traditional bulk-synchronous
providing a historical comparative baseline.

Coherence Protocol Implementations: This work im-
plements and compares 4 coherence possibilities: a non-
hierarchical software protocol (conventional software co-
herence with scopes and bulk-invalidation of caches), a
non-hierarchical hardware protocol (NHCC), a hierarchical
software protocol (conventional software coherence with
hierarchical extension to leverage scopes), and our proposed
hierarchical hardware protocol (HMG). We also compare
them to idealized caching that does not enforce coherence;
this serves as a loose upper bound for performance that
can be achieved via hardware caching. For non-hierarchical
protocols, multi-GPU systems like Fig. 1 behaves as a single
flat GPU with more GPMs.

NHCC and HMG behave according to Section IV and V
respectively. Load-acquire operations in our software coher-
ence protocols trigger bulk cache invalidations in any caches
between the issuing SM and the home node for the scope
in question. For example, .gpu-scoped loads will invalidate
both the L1 cache of the issuing SM and the GPM-local
L2 cache. In the hierarchical protocol, .sys-scoped loads
invalidate the L1 cache of the issuing SM and all L2 caches of
the issuing GPU. However, in the non-hierarchical protocol,
.sys-scoped loads need not to invalidate L2 caches in other
GPMs of the same GPU, as subsequent loads will not fetch
stale data from those caches. Store-release operations stall
subsequent operations until the home node for the scope in
question clears all pending writes.

In our evaluation, all caches are write-through. We do
not implement the optional sharer downgrade messages. We
model one directory optimization: each entry tracks the state
of four cache lines together. This enables 12K×4×128B =
6MB of data assigned to each GPM to be actively shared
by other GPMs and/or GPUs. Section VII-B later shows
performance sensitivity to the choices of these parameters.

VII. RESULTS AND DISCUSSION

We first compare the performance of HMG to NHCC,
software coherence protocols, and idealized caching without
any coherence overhead. Then we conduct sensitivity analysis
to explore the design space of HMG.

A. Performance Analysis

Single-GPU System: Like prior work, we observe that
for most benchmarks, both software and hardware coherence
generally perform similarly and close to an idealized non-
coherent caching scheme. The relatively small L2 caches
and relatively large inter-GPM bandwidths can minimize the
performance penalty of cache invalidations in single-GPU
systems, and hence we do not elaborate on them further here.

Multi-GPU System: While software coherence may be
sufficient within individual GPUs, even for benchmarks with
fine-grained thread-to-thread communication, Fig. 8 shows
that the benefits of HMG are much more pronounced in

590

o
v
e
rf

e
a
t

0.0

0.5

1.0

1.5

2.0

a
v
g
 c

a
ch

e
lin

e
in

v
s

b
y
 e

a
ch

 s
to

re

M
in

iA
M

R

A
le

x
N

e
t

C
o
M

D

H
P
G

M
G

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

2.1

n
a
m

d
2

.1
0

re
sn

e
t

m
st

n
w

-1
6

K

ls
tm

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

b
fs

sn
a
p

R
N

N
_W

G
R

A
D

A
v
g

Figure 9: Average number of cache lines invalidated by each
store request on shared data.

o
v
e
rf

e
a
t

0.0

0.5

1.0

1.5

2.0

a
v
g
 c

a
ch

e
lin

e
 i
n
v
s

b
y

e
a
ch

 d
ir

e
ct

o
ry

 e
v
ic

ti
o
n

M
in

iA
M

R

A
le

x
N

e
t

2.9

C
o
M

D

H
P
G

M
G

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

n
a
m

d
2

.1
0

re
sn

e
t

m
st

n
w

-1
6

K
3.5

ls
tm

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

b
fs

3.4

sn
a
p

R
N

N
_W

G
R

A
D

A
v
g

Figure 10: Average number of cache lines invalidated by
each coherence directory eviction.

deeply hierarchical multi-GPU systems, especially for the
applications which have more fine-grained data sharing (i.e,
the right half side). In a 4-GPU system, HMG generally
outperforms both software coherence protocols and NHCC.
Both software and hardware hierarchical protocols signifi-
cantly benefit from the additional intra-GPU data locality.
Meanwhile, the non-hierarchical protocols suffer from larger
inter-GPU latency and bandwidth penalties.

Fig. 9 and 10 show that cache line invalidations due to
store instructions or coherence directory evictions do not
have a significant impact on performance of HMG. This is
because stores only trigger invalidations if there is a sharer
for the same address and typically only a small percentage of
the memory footprint of each workload contains read-write
shared data. Even among stores or directory evictions that do
trigger sharer invalidations, there are generally no more than
two sharers in our workloads. These observations highlight
the benefit of tracking sharers dynamically, rather than e.g.,
classifying data sharing type alone [14].

Graph workloads’ fine-grained, often conflicting access
patterns can lead to false sharing. Store operations in software
coherence protocols will simply write this data through,
but HMG might trigger frequent invalidations (in these
experiments, at the granularity of four cache lines per
directory entry), depending on the input sets. In such cases,
the hardware protocol HMG will have higher overhead. This
explains the performance of mst, for example. For most
other applications, the benefits of HMG outweigh the costs.

We also profile the bandwidth overhead of invalidation

o
v
e
rf

e
a
t

0

1

2

3

4

b
a
n
d
w

id
th

 c
o
st

 o
f

in
v
 m

e
ss

a
g
e
s

(G
B

/s
) 15.6

M
in

iA
M

R

19.6

A
le

x
N

e
t

C
o
M

D

H
P
G

M
G

8.8

M
in

iC
o
n
ta

ct

p
a
th

fi
n
d
e
r

N
e
k
b
o
n
e

cu
S
o
lv

e
r

n
a
m

d
2

.1
0

re
sn

e
t

m
st

n
w

-1
6

K

ls
tm

R
N

N
_F

W

R
N

N
_D

G
R

A
D

G
o
o
g
Le

N
e
t

b
fs

sn
a
p

R
N

N
_W

G
R

A
D

A
v
g

Figure 11: Total bandwidth cost of invalidation messages.

messages. Fig. 11 shows that the total bandwidth cost
of invalidation messages is generally as low as just a
few gigabytes per second. This is consistent with prior
data since there is little read-write sharing and a low
number of sharers when invalidations must be sent out. The
size of each invalidation message is also relatively small
compared to a GPU cache line. Combined with the fact that
GPU workloads are generally latency tolerant, it becomes
clear that HMG for hierarchical multi-GPUs can deliver
high performance, at high efficiency, with relatively simple
hardware implementation. Overall, our results confirm prior
suggestions that complicated CPU-like coherence protocols
are unnecessary, even in hierarchical multi-GPU contexts. By
providing a lightweight coherence enforcement mechanism
specifically tuned to the scoped memory model, HMG is able
to deliver 97% of the ideal speedup that inter-GPU caching
can possibly enable.

B. Sensitivity Analysis

To understand the relationship between our architectural
parameters and the performance of HMG, we performed
sensitivity studies across a range of design space parameters.
• Bandwidth-limited inter-GPU links are the main cause

of NUMA effects that often bottleneck multi-GPU
performance. Fig. 12 shows that when sweeping across
inter-GPU bandwidths, HMG is always the best perform-
ing coherence option, even when absolute performance
begins to saturate due to sufficient inter-GPU bandwidth.

• The impact of L2 cache size on performance is shown in
Fig. 13. Because of the overhead of cache invalidation,
the benefits of increased L2 capacity are restricted by
software coherence protocols. Conversely, the perfor-
mance of HMG increases as capacity grows, indicating
the advantage of HMG will only become more favorable
in systems with larger caches.

• Coherence directory sizing presents a trade-off between
power/area and coverage/performance. As Fig. 14 shows,
the performance of our proposed HMG is somewhat
sensitive to directory size. The benefit of hardware-
managed coherence over software coherence shrinks if
the directory is not able to track enough sharers and is
forced to perform additional cache invalidations across
GPUs. However, our modestly-sized directories are large

591

100GB/s
0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

200GB/s 300GB/s 400GB/s

Non-Hierarchical HW Coherence
Hierarchical SW Coherence

HMG Coherence
Idealized Caching w/o Coherence

Figure 12: Performance sensitivity to inter-GPU bandwidth
(baseline is no caching with configurations of Table II).

6MB/GPU
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

12MB/GPU 24MB/GPU

Non-Hierarchical HW Coherence
Hierarchical SW Coherence

HMG Coherence
Idealized Caching w/o Coherence

Figure 13: Performance sensitivity to L2 cache size (baseline
is no caching with configurations of Table II).

enough to successfully capture the locality needed to
deliver near-ideal caching performance.

• Coarse-grained directory entry tracking granularity (e.g.,
where each entry tracks four cache lines at a time) allows
directories to be made smaller, but it also introduces a
risk of false sharing. In order to quantify this impact,
we varied the granularity tracked by each directory
entry while simultaneously adjusting the total number
of entries in order to keep the total coverage constant.
The results (not pictured) showed minimal sensitivity,
and we therefore conclude that coarse-grained directory
tracking is a useful optimization for HMG.

C. Hardware Costs

In our HMG implementation, each directory entry needs
to track as many as six sharers: three GPMs in the same
GPU and three other GPUs. Therefore, a 6 bit vector is
required for the sharer list. Because our protocol uses just
two states, Valid and Invalid, only one bit is needed to track
directory entry state. We assume 48 bits for tag addresses,
so each entry in the coherence directory requires 55 bits of
storage. Every GPM has 12K directory entries, so the total
storage cost of the coherence directories is 84KB, which is
only 2.7% of each GPM’s L2 cache data capacity, a small
price to pay for large performance improvements in future
multi-GPUs.

D. Discussion

On-package integration [5, 12, 53] along with off-package
integration technologies [6–8] enable more and more GPU
modules to be integrated in a single systems. However,
NUMA effects are exacerbated as the number of GPMs,
GPUs, and non-uniform topologies increase within the system.
In these situations, HMG’s coherence directory would need

3K entries/GPM
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

6K entries/GPM 12K entries/GPM

Non-Hierarchical HW Coherence
Hierarchical SW Coherence

HMG Coherence
Idealized Caching w/o Coherence

Figure 14: Performance sensitivity to the coherence directory
size (baseline is no caching with configurations of Table II).

to record more sharers and cover a larger footprint of shared
data, but the system performance will likely be more sensitive
to the link speeds and the actual network topology. As shown
in Fig. 14, HMG can perform very well even after we reduce
the coherence directory size by 50%, showing that there is
still room to scale HMG to larger systems. We envision our
proposed coherence protocol being applicable for systems that
can be comprised by a single NVSwitch-based network within
a single operating system node. Systems significantly larger
than this (e.g., 1024-GPU systems) may be decomposed into
a hierarchy consisting of hardware-coherent GPU-clusters
which are in turn share data using software mechanisms such
as MPI or SHMEM [54, 55].

The rise of MCM-GPU-like architectures might seem to
motivate adding scopes in between .cta and .gpu, to
minimize the negative effects of coherence. However, our
single-GPU performance results indicate that our workloads
are minimally sensitive to the inter-GPM coherence mecha-
nism due to high inter-GPM bandwidth. As a result, the
performance benefits of introducing a new .gpm scope
may not outweigh the added programmer burden of using
numerous scopes. We expect further exploration of other
software-hardware coherence interactions to remain an active
area of research as GPU systems continue to grow in size.

VIII. RELATED WORK

Memory Consistency: Some previous work enforced
sequential consistency (SC) in GPUs [27, 56, 57]. They
found that TSO and relaxed memory models could not
significantly outperform SC. However, modern GPU products
still enforce relaxed memory models, as weak models allow
for more microarchitectural flexibility and arguably better
performance/power/area tradeoffs.

Cache Coherence: We have discussed most of the existing
GPU coherence protocols in Section II-D. Others have
also proposed GPU coherence based on physical or logical
timestamps [15, 27]. Without explicit invalidation messages,
cache lines are self-invalidated after timestamps are expired,
so they can reduce traffic load and improve performance
efficiently. However, they considered neither architecture
hierarchy nor scoped memory model. In this paper, we
explore the coherence support for future deeply hierarchical
GPU systems with scoped memory model enforcement.

592

Coherence hierarchy has been commonly employed in
CPUs [58, 59]. Most hierarchical CPU designs [40–42, 44, 60]
have adopted MESI-like coherence, which has been proven
to be a poor fit for GPUs [15, 25]. HMG shows that the
complexity of extra states is also unnecessary for hierarchical
GPUs. Both DASH [41] and WildFire [44] increased the
complexity even more by employing the mixed coherence
policy: intra-cluster snoopy coherence and inter-cluster
directory-based coherence. To implement consistency model
efficiently, Alpha GS320 [60] separated the commit events to
allow time-critical replies to bypass inbound requests without
violating memory order constraints. HMG can achieve almost
optimal performance without such overheads.

Shared data synchronization in the unified memory space
of heterogeneous systems also requires efficient coherence
protocols [61–63]. We expect that HMG would be integrated
nicely with such schemes due to its simple states and clear
coherence hierarchy.

GPU Scaling: As Section II-A described, previous
work built larger GPU systems with distributed architec-
tures [5, 13, 14]. They alleviated the NUMA effect with
aggressive caching, which correctness is enforced with
either conventional software or hardware coherence without
recording exact sharers. However, none of them targeted
deeply hierarchical systems and scoped memory models.

IX. CONCLUSION

In this paper, we introduce HMG, a novel cache coherence
protocol specifically tailored to scale well to hierarchical
multi-GPU systems. HMG provides efficient support for
fine-grained synchronization now permitted under recently-
formalized scoped GPU memory models. We find that,
without much complexity, simple hierarchical extensions
and optimizations to existing coherence protocols can take
advantage of relaxations now permitted in scoped memory
models to achieve 97% performance of an ideal caching
scheme that has no coherence overhead. Thanks to its
cheap hardware implementation and high performance, HMG
demonstrates the most practical solution available for extend-
ing cache coherence to future hierarchical multi-GPU systems,
and thereby for enabling continued performance scaling of
applications onto larger and larger GPU-based systems.

X. ACKNOWLEDGMENT

We are grateful to Mieszko Lis, and the anonymous
reviewers for their insightful feedback.

REFERENCES

[1] Inside HPC, “TOP500 Shows Growing Momentum for Acceler-
ators,” https://insidehpc.com/2015/11/top500-shows-growing-
momentum-for-accelerators/, 2015, accessed on 2019-08-04.

[2] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cuDNN: Efficient Primitives
for Deep Learning,” CoRR, vol. abs/1410.0759, October 2014.
[Online]. Available: http://arxiv.org/abs/1410.0759

[3] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” CoRR,
vol. abs/1409.1556, September 2014. [Online]. Available:
http://arxiv.org/abs/1409.1556

[4] P. Harish and P. Narayanan, “Accelerating Large Graph
Algorithms on the GPU Using CUDA,” in International
conference on high-performance computing (HiPC). Springer,
2007, pp. 197–208.

[5] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi,
O. Villa, A. Jaleel, C.-J. Wu, and D. Nellans, “MCM-GPU:
Multi-Chip-Module GPUs for Continued Performance Scala-
bility,” in Proceedings of the 44th International Symposium
on Computer Architecture (ISCA). ACM, 2017, pp. 320–332.

[6] NVIDIA, “NVIDIA NVLink: High Speed GPU Inter-
connect,” https://www.nvidia.com/en-us/design-visualization/
nvlink-bridges/, accessed on 2019-08-04.

[7] NVIDIA, “NVIDIA NVSwitch: The World’s Highest-
Bandwidth On-Node Switch,” https://images.nvidia.com/
content/pdf/nvswitch-technical-overview.pdf, accessed on
2019-08-04.

[8] “AMD’s answer to Nvidia’s NVLink is xGMI, and it’s coming
to the new 7nm Vega GPU,” https://www.pcgamesn.com/amd-
xgmi-vega-20-gpu-nvidia-nvlink, accessed on 2019-08-04.

[9] NVIDIA, “NVIDIA DGX-1: Essential Instrument for AI
Research,” https://www.nvidia.com/en-us/data-center/dgx-1/,
2017, accessed on 2019-08-04.

[10] ——, “NVIDIA DGX-2: The world’s most powerful AI system
for the most complex AI challenges,” https://www.nvidia.com/
en-us/data-center/dgx-2/, 2018, accessed on 2019-08-04.

[11] ——, “NVIDIA HGX-2: Powered by NVIDIA Tesla V100
GPUs and NVSwitch,” https://www.nvidia.com/en-us/data-
center/hgx/, 2018, accessed on 2019-08-04.

[12] J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer,
S. G. Tell, J. M. Wilson, and C. T. Gray, “A 0.54 pJ/b 20 Gb/s
Ground-Referenced Single-Ended Short-Reach Serial Link in
28 nm CMOS for Advanced Packaging Applications,” IEEE
Journal of Solid-State Circuits (JSSC), vol. 48, no. 12, pp.
3206–3218, 2013.

[13] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi,
A. Jaleel, A. Ramirez, and D. Nellans, “Beyond the Socket:
NUMA-aware GPUs,” in Proceedings of the 50th International
Symposium on Microarchitecture (MICRO). ACM, 2017, pp.
123–135.

[14] V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans,
and O. Villa, “Combining HW/SW Mechanisms to Improve
NUMA Performance of Multi-GPU Systems,” in Proceedings
of the 51th International Symposium on Microarchitecture
(MICRO). IEEE, 2018, pp. 339–351.

[15] I. Singh, A. Shriraman, W. W. Fung, M. O’Connor, and
T. M. Aamodt, “Cache Coherence for GPU Architectures,”
in Proceedings of the 19th International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2013,
pp. 578–590.

593

[16] M. D. Sinclair, J. Alsop, and S. V. Adve, “Efficient GPU
Synchronization Without Scopes: Saying No to Complex
Consistency Models,” in Proceedings of the 48th International
Symposium on Microarchitecture (MICRO). ACM, 2015, pp.
647–659.

[17] M. Burtscher, R. Nasre, and K. Pingali, “A Quantitative Study
of Irregular Programs on GPUs,” in International Symposium
on Workload Characterization (IISWC). IEEE, 2012, pp.
141–151.

[18] J. Kim and C. Batten, “Accelerating Irregular Algorithms on
GPGPUs Using Fine-Grain Hardware Worklists,” in Proceed-
ings of the 47th International Symposium on Microarchitecture
(MICRO). IEEE, 2014, pp. 75–87.

[19] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron,
“Pannotia: Understanding Irregular GPGPU Graph Applica-
tions,” in International Symposium on Workload Characteri-
zation (IISWC). IEEE, 2013, pp. 185–195.

[20] M. D. Sinclair, J. Alsop, and S. V. Adve, “HeteroSync: A
Benchmark Suite for Fine-Grained Synchronization on Tightly
Coupled GPUs,” in International Symposium on Workload
Characterization (IISWC). IEEE, 2017, pp. 239–249.

[21] D. Lustig, S. Sahasrabuddhe, and O. Giroux, “A Formal
Analysis of the NVIDIA PTX Memory Consistency Model,”
in Proceedings of the 24th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 2019, pp. 257–270.

[22] “HSA Platform System Architecture Specification Version 1.2,”
http://www.hsafoundation.com/?ddownload=5702, accessed on
2019-07-07.

[23] “The OpenCL Specification Version 2.2,” https://www.khronos.
org/registry/OpenCL/specs/2.2/pdf/OpenCL API.pdf, accessed
on 2019-07-07.

[24] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R.
Gaster, M. D. Hill, S. K. Reinhardt, and D. A. Wood,
“Heterogeneous-Race-Free Memory Models,” in Proceedings of
the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).
ACM, 2014, pp. 427–440.

[25] B. A. Hechtman, S. Che, D. R. Hower, Y. Tian, B. M.
Beckmann, M. D. Hill, S. K. Reinhardt, and D. A. Wood,
“QuickRelease: A Throughput-oriented Approach to Release
Consistency on GPUs,” in Proceedings of the 20th Interna-
tional Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2014, pp. 189–200.

[26] J. Alsop, M. S. Orr, B. M. Beckmann, and D. A. Wood,
“Lazy Release Consistency for GPUs,” in Proceedings of the
49th International Symposium on Microarchitecture (MICRO).
IEEE, 2016, p. 26.

[27] X. Ren and M. Lis, “Efficient Sequential Consistency in GPUs
via Relativistic Cache Coherence,” in Proceedings of the 23rd
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2017, pp. 625–636.

[28] W. J. Dally, C. T. Gray, J. Poulton, B. Khailany, J. Wilson,
and L. Dennison, “Hardware-Enabled Artificial Intelligence,”
in Symposium on VLSI Circuits. IEEE, 2018, pp. 3–6.

[29] L. Chien, “How to Avoid Global Synchronization by Domino
Scheme,” NVIDIA GPU Technology Conference (GTC), 2014.

[30] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali, “Lon-
eStar: A Suite of Parallel Irregular Programs,” in International
Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 2009, pp. 65–76.

[31] J. Gong, S. Markidis, E. Laure, M. Otten, P. Fischer, and
M. Min, “Nekbone Performance on GPUs with OpenACC
and CUDA Fortran Implementations,” The Journal of Super-
computing, vol. 72, no. 11, pp. 4160–4180, 2016.

[32] D. Li and M. Becchi, “Multiple Pairwise Sequence Align-
ments with the Needleman-Wunsch Algorithm on GPU,” in
SC Companion: High Performance Computing, Networking,
Storage and Analysis (SCC). IEEE, 2012, pp. 1471–1472.

[33] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron, “Rodinia: A Benchmark Suite For
Heterogeneous Computing,” in International Symposium on
Workload Characterization (IISWC). IEEE, 2009, pp. 44–54.

[34] R. J. Zerr and R. S. Baker, “SNAP: SN (discrete ordinates)
Application Proxy Description,” Los Alamos National Labo-
ratories, Tech. Rep. LAUR-13-21070, 2013.

[35] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid,
E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten,
“Scalable Molecular Dynamics with NAMD,” Journal of
Computational Chemistry, vol. 26, no. 16, pp. 1781–1802,
2005.

[36] G. Diamos, S. Sengupta, B. Catanzaro, M. Chrzanowski,
A. Coates, E. Elsen, J. Engel, A. Hannun, and S. Satheesh,
“Persistent RNNs: Stashing Recurrent Weights On-Chip,” in
International Conference on Machine Learning (ICML), 2016,
pp. 2024–2033.

[37] NVIDIA, “Unified Memory in CUDA 6,” https://devblogs.
nvidia.com/unified-memory-in-cuda-6/, Nov 2013, accessed
on 2019-08-04.

[38] K. Koukos, A. Ros, E. Hagersten, and S. Kaxiras, “Building
Heterogeneous Unified Virtual Memories (UVMs) without
the Overhead,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 13, no. 1, p. 1, 2016.

[39] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose,
J. Gandhi, C. J. Rossbach, and O. Mutlu, “Mosaic: A GPU
Memory Manager with Application-Transparent Support for
Multiple Page Sizes,” in Proceedings of the 50th International
Symposium on Microarchitecture (MICRO). ACM, 2017, pp.
136–150.

[40] S.-L. Guo, H.-X. Wang, Y.-B. Xue, C.-M. Li, and D.-S. Wang,
“Hierarchical Cache Directory for CMP,” Journal of Computer
Science and Technology, vol. 25, no. 2, pp. 246–256, 2010.

594

[41] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and
J. Hennessy, “The Directory-Based Cache Coherence Protocol
for the DASH Multiprocessor,” in Proceedings of the 17th
International Symposium on Computer Architecture (ISCA).
IEEE, 1990, pp. 148–159.

[42] D. Mulnix, “Intel Xeon Processor Scalable Family Technical
Overview,” https://software.intel.com/en-us/articles/intel-xeon-
processor-scalable-family-technical-overview, 2017, accessed
on 2019-08-04.

[43] D. J. Sorin, M. D. Hill, and D. A. Wood, “A Primer on Memory
Consistency and Cache Coherence,” Synthesis Lectures on
Computer Architecture, vol. 6, no. 3, pp. 1–212, 2011.

[44] E. Hagersten and M. Koster, “WildFire: A Scalable Path for
SMPs,” in Proceedings of the 5th International Symposium
on High Performance Computer Architecture (HPCA). IEEE,
1999, pp. 172–181.

[45] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan,
J. Ketema, D. Poetzl, T. Sorensen, and J. Wickerson, “GPU
Concurrency: Weak Behaviours and Programming Assump-
tions,” in Proceedings of the 20th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2015, pp. 577–591.

[46] A. Jain, M. Khairy, and T. G. Rogers, “A Quantitative
Evaluation of Contemporary GPU Simulation Methodology,”
Proceedings of the ACM on Measurement and Analysis of
Computing Systems (SIGMETRICS), p. 35, 2018.

[47] M. Khairy, A. Jain, T. M. Aamodt, and T. G. Rogers,
“Exploring Modern GPU Memory System Design Challenges
through Accurate Modeling,” CoRR, vol. abs/1810.07269,
October 2018. [Online]. Available: http://arxiv.org/abs/1810.
07269

[48] M. A. Raihan, N. Goli, and T. M. Aamodt, “Modeling
Deep Learning Accelerator Enabled GPUs,” in International
Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 2019, pp. 79–92.

[49] J. Lew, D. A. Shah, S. Pati, S. Cattell, M. Zhang, A. Sand-
hupatla, C. Ng, N. Goli, M. D. Sinclair, T. G. Rogers et al.,
“Analyzing Machine Learning Workloads Using a Detailed
GPU Simulator,” in International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2019, pp.
151–152.

[50] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong,
S. Treadway, Y. Bao, S. Hance, C. McCardwell, V. Zhao,
H. Barclay, A. K. Ziabari, Z. Chen, R. Ubal, J. L. Abellán,
J. Kim, A. Joshi, and D. Kaeli, “MGPUSim: Enabling
Multi-GPU Performance Modeling and Optimization,” in
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA). ACM, 2019, pp. 197–209.

[51] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA Workloads Using a Detailed
GPU Simulator,” in International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2009, pp.
163–174.

[52] A. Gutierrez, B. Beckmann, A. Dutu, J. Gross, J. Kalamatianos,
O. Kayiran, M. Lebeane, M. Poremba, B. Potter, S. Puthoor,
M. D. Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. G.
Rogers, “Lost in Abstraction: Pitfalls of Analyzing GPUs
at the Intermediate Language Level,” in Proceedings of the
24th International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 141–155.

[53] AMD, “Multi-Chip Module Architecture: The Right Approach
for Evolving Workloads,” http://developer.amd.com/wordpress/
media/2017/11/LE-62006-SB-Latency-170824-Final-1.pdf,
August 2017.

[54] Message Passing Interface Forum, “MPI: A Message-Passing
Interface Standard, Version 3.1,” https://www.mpi-forum.org/
docs/mpi-3.1/mpi31-report.pdf, June 2015.

[55] OpenSHMEM Project, “OpenSHMEM Application Program-
ming Interface,” http://www.openshmem.org/site/sites/default/
site files/OpenSHMEM-1.4.pdf, December 2017.

[56] B. A. Hechtman and D. J. Sorin, “Exploring Memory Con-
sistency for Massively-Threaded Throughput-Oriented Proces-
sors,” in Proceedings of the 40th International Symposium on
Computer Architecture (ISCA). ACM, 2013, pp. 201–212.

[57] A. Singh, S. Aga, and S. Narayanasamy, “Efficiently Enforcing
Strong Memory Ordering in GPUs,” in Proceedings of the
48th International Symposium on Microarchitecture (MICRO).
ACM, 2015, pp. 699–712.

[58] A. W. Wilson Jr, “Hierarchical Cache/Bus Architecture for
Shared Memory Multiprocessors,” in Proceedings of the 14th
International Symposium on Computer Architecture (ISCA).
ACM, 1987, pp. 244–252.

[59] D. A. Wallach, “PHD: A Hierarchical Cache Coherent Proto-
col,” Ph.D. dissertation, Massachusetts Institute of Technology,
1992.

[60] K. Gharachorloo, M. Sharma, S. Steely, and S. Van Doren,
“Architecture and Design of AlphaServer GS320,” in Proceed-
ings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 2000, pp. 13–24.

[61] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D.
Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous System
Coherence for Integrated CPU-GPU Systems,” in Proceedings
of the 46th International Symposium on Microarchitecture
(MICRO). ACM, 2013, pp. 457–467.

[62] L. E. Olson, M. D. Hill, and D. A. Wood, “Crossing Guard:
Mediating Host-Accelerator Coherence Interactions,” in Pro-
ceedings of the 22th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 2017, pp. 163–176.

[63] J. Alsop, M. D. Sinclair, and S. V. Adve, “Spandex: A
Flexible Interface for Efficient Heterogeneous Coherence,” in
Proceedings of the 45th International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 261–274.

595

