
High-performance GPU Transactional Memory via Eager Conflict Detection

Xiaowei Ren and Mieszko Lis

The University of British Columbia
{xiaowei, mieszko}@ece.ubc.ca

Abstract—GPUs transactional memory (TM) proposals to
date have relied on lazy, value-based conflict detection, assum-
ing that GPUs can amortize the latency by executing other
warps. In practice, however, concurrency must be throttled
to a few warps per core to avoid high abort rates, and TM
performance has remained far below that of fine-grained locks.
We trace this to the latency cost of validating transactions:

two round trips across the crossbar required for most commits
and aborts. With limited concurrency, the warp scheduler
cannot amortize this, and leaves the core idle most of the time.
In this paper, we show that value-based validation does

not scale to high thread counts, and eager conflict detection
becomes more efficient as the number of threads grows. We
leverage this insight to propose GETM, a GPU TM with eager
conflict detection. GETM relies on a novel distributed logical
clock scheme to implement eager conflict detection without the
need for cache coherence or signature broadcasts.
GETM is up to 2.1 times faster than the state-of-the art

prior work WarpTM (gmean 1.2 times), with 3.6 times lower
silicon area overheads and 2.2 times lower power overheads.

I. Introduction

While GPUs have traditionally focused on streaming appli-

cations with regular parallelism, irregular GPU applications

with fine-grained synchronization are becoming increasingly

important. Graph transformation [1, 2], dynamic program-

ming [3], parallel data structures [4], and distributed hashta-

bles [5] have all been accelerated on GPUs using fine-grained

locks. Fine-grained parallel algorithms have recently become

a hardware optimization focus for commercial GPUs [6].

Unfortunately, high-performance parallel applications with

fine-grained locks are challenging to program and debug.

Indeed, reasoning about thread-based synchronized programs

is difficult in general [7, 8], and even simple formal analyses

that account for inter-thread synchronization are NP-hard [9]

or undecidable [10]. In practice, the problem is exacerbated in

accelerators like GPUs, because optimizing for performance

is paramount — after all, if it weren’t, the code would be

running on a CPU. In GPUs, this problem is even worse, as

the combination of lockstep warp execution and stack-based

branch reconvergence can result in unexpected deadlocks in

code that would be deadlock-free in CPUs [11].

Transactional memory (TM) [12, 13] offers an attractive

solution. In contrast to the imperative style and global depen-

dencies induced by locks, transactions enable a declarative
programming style: the programmer specifies that a given

code block constitutes an atomic transaction and leaves

execution details to the runtime (see Fig. 1). Typically,

if (src > dst) { // acquire in-order to avoid deadlock

outer = src; inner = dst;

} else {

inner = src; outer = dst;

}

done = false;
while (!done) { // loop on flag to avoid SIMT deadlock

if (atomicCAS(&locks[outer], 0, 1) == 0) {

if (atomicCAS(&locks[inner], 0, 1) == 0) {

accounts[src] -= amount;

accounts[dst] += amount;

locks[inner] = 0; // release

locks[outer] = 0; // both locks

done = true;
} else { // acquired outer but not inner lock

locks[outer] = 0; // release outer lock

}

}

}

txbegin
accounts[src] -= amount;

accounts[dst] += amount;

txcommit

Figure 1. CUDA ATM benchmark fragment using either locks or TM.

the runtime (hardware or software) attempts to execute

transactions optimistically, only aborting and retrying them

when conflicts are detected; writes performed by aborted

transactions are not visible to transactions that commit

successfully. Because they maintain atomicity and isolation,

transactions are composable [14], and substantially simplify
code in complex codebases [15, 16], leading to many times

lower error rates [17]. Recently, hardware-level transactional

memory has appeared in production CPUs from major

vendors [18–21], as well as in designs and proposals from

other significant industry players [22, 23].

Early proposals for hardware-level transactional memory

for GPUs solved key problems of interacting with the SIMT

stack [24] and coalescing transactions at warp level [25]. Both

rely on value-based validation, which requires one core↔

LLC round trip to validate each transaction and another

round-trip to finalize the commit. Combined with the massive

concurrency present in GPU workloads, these long latencies

create bottlenecks in the commit phase: even if transactional

concurrency is restricted, 700 or more transactions may be

queued in the commit phase on average [24].

Prior proposals have therefore limited transactional con-

currency to very few warps per SIMT core [24, 25]. With

few warps, however, the GPU can no longer effectively

amortize commit latencies, so some performance is lost.

Another proposal has been to proactively abort transactions

235

2018 IEEE International Symposium on High Performance Computer Architecture

2378-203X/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCA.2018.00029

by broadcasting conflict sets from the LLC back to the SIMT

cores [26]; the bandwidth and latency of these broadcasts,

however, limit this approach to extremely long transactions.

In this paper, we instead propose to directly reduce commit

costs by detecting conflicts eagerly. If conflict detection

is performed separately for each memory access — a

latency well within a GPU’s capacity to amortize even with

concurrency throttling — a transaction that arrives at the

commit point is guaranteed to commit successfully. Because

there is no need for time-consuming value-based conflict

detection at commit time, the commit itself can be taken off

the critical path while the warp continues execution.

Specifically, we make the following contributions:

• we trace the inefficiency of prior GPU TM proposals

to long, unamortized commit latencies;

• we show that the number of concurrent transactions in

GPUs favours eager conflict detection;

• we propose a novel GPU TM system with eager conflict

detection and lazy version management;

• we describe an efficient data structure that precisely

tracks metadata for open transactions of unlimited size

while approximately summarizing past commits.

To the best of our knowledge, this is the first full GPU

hardware TM proposal with eager conflict detection, and the

first to leave transaction commits out of the critical path.

II. Background

In this section we briefly sketch the design space of hardware

transactional memory (HTM), describe the best-performing

prior GPU proposal WarpTM [25], and identify the bottleneck

mechanisms we replace in GETM.

A. The Transactional Memory design space
HTMs can be categorized along two axes: conflict de-

tection and versioning. In eager conflict detection (e.g.,

LogTM [27, 28]), an inconsistent read or update attempt

by a transaction is detected when the access is made, and

one of the conflicting transactions is aborted. Lazy conflict

detection (e.g., TCC [29]) defers this until later: often, the

entire transaction log is validated during the commit process,

and conflicts are discovered only then. In principle, the

lazy technique can make better conflict resolution decisions

because the entire transaction is known, but has longer

commit/abort latencies because the entire transaction must

be verified atomically. Typically, eager conflict detection

leverages an existing CPU coherence protocol.

Version management can also be eager or lazy. Lazily-

versioned TMs (e.g., TCC [29]) add transactional accesses

to a redo log, which is only written to memory when the
transaction has been validated and commits; if the transaction

aborts, the redo log is discarded. In eager versioning (e.g.,

LogTM [27, 28]), the transaction writes the new value directly

to the memory hierarchy, but keeps the old value in an undo
log; if a transaction aborts, the undo log is written to memory.

1 2 3

validationLD ST

LD ST commit

SIMT
core

LLC

SIMT
core

LLC 4

1

2

3

temporal conflict check

value-based validation

commit and final ACK

metadata table access

4 4

← GETM (this proposal)

↑ WarpTM (best prior art)

local

commit

Figure 2. Messages required for transactional memory accesses and commits
in WarpTM (top) and GETM (bottom).

B. GPU Transactional Memory
The state-of-the-art GPU TM, WarpTM [24, 25], combines

lazy version management with lazy, value-based conflict

detection.1 Fig. 2 (top) shows the access and commit timing.

Firstly, WarpTM modifies the SIMT stacks to allow

aborting and restarting transactions at thread granularity.

GPUs execute many (32–64) threads in lockstep as a single

warp; transactions are a thread-level abstraction, however, so

it is possible that some of the threads in the warp commit

while other threads abort. WarpTM adds special Transaction

and Retry stack entry types that track which threads aborted

and should run again when the transaction is restarted.

As transactions execute, their memory accesses are sent

to a redo log, stored in the SIMT core’s local memory.2 For

each address, loads record the value that was observed (for

later validation), and stores record the newly written value.

When the warp reaches txcommit, a tx log unit traverses the

redo log to record all threads wishing to access each address;

this allows the SIMT core to resolve all intra-warp conflicts

and coalesce the warp’s surviving transactions.

At commit time, the read and write logs of the coalesced

transaction are sent to validation/commit units (VUs/CUs)

colocated with each LLC bank. Each validation unit verifies

that the value observed by each read in the log corresponds

to the current value in the LLC, and sends a success/failure

message to the SIMT core. The core collects these to

check whether any addresses failed validation, and sends

a commit/abort confirmation back to the CUs. Each CU then

sends the write log values to the LLC, and acks to the

core. Once the core has collected acks from all CUs, the

warp continues execution. Transactional consistency requires

each transaction to be validated and committed atomically,

so while one transaction goes through the two-round-trip

validation/commit sequence, other transactions must wait.

WarpTM also includes a temporal conflict check mech-

anism (TCD) that allows read-only transactions to commit

silently. A TCD table at the LLC that records the physical

1We discuss other GPU proposals [26, 30, 31] in Sec. VII.

2In NVidia terminology, a GPU core’s local memory is an address range
of the global address space reserved for that core. As with the rest of the
address space, local memory is cached in the GPU cache hierarchy.

236

clock cycle number of the last store to each address; the

cycle numbers are updated as transactions commit. Each

transactional load is immediately sent from the SIMT core

to this TCD table; if a read-only transaction has only read

locations modified in the past, it is allowed to bypass value-

based validation and commit silently.

Because GETM uses eager conflict detection, transactions

that have reached txcommit are guaranteed to be free of

conflicts, and commit without additional validation or acks.

GETM retains the SIMT stack modifications and warp-

level transaction coalescing of WarpTM. However, it replaces

the value-based validation and TCD read-only silent commits

with an eager conflict detection scheme (see Sec. IV), which

greatly simplifies the validation/commit unit and substantially

reduces the hardware overhead (see Sec. V and VI).

C. Eager conflict detection and GPUs
Although eager conflict detection is more suitable for high-

thread-count architectures (see Sec. III), the lack of a

natural conflict detection mechanism poses a challenge to

implementing eager conflict detection in GPUs. Prior TMs

with eager conflict detection (e.g., LogTM [27, 28]) have

targeted CPUs, in which conflicts are naturally flagged

when cache lines are invalidated by the coherence protocol.

Unfortunately, extant GPUs lack hardware cache coherence,

so another mechanism must be designed. Another challenge

is scalability, since GPUs have large core counts and many

concurrent warps in each core. This precludes, for example,

mechanisms that collect and broadcast read/write signatures.

To provide a scalable eager conflict detection mechanism,

we take inspiration from the software transactional memory

system TL2 [32]. TL2 uses a global version-clock that is

incremented by every transaction which writes to memory,

and maintains last-written version-clock values for every

memory location. As the transaction accesses memory, it

collects version-clocks for all referenced locations. At commit

time, these clocks are checked to ensure that the transaction

observed a consistent state of memory; if there are no

violations, TL2 acquires locks for all locations it intends

to modify and finally writes the memory.

In TL2, logical clocks are used to ensure consistency,

but conflict detection is still performed lazily at commit

time. In addition, the global version clock must be shared

among multiple cores, which relies on the underlying cache

coherence protocol. We leverage the idea of providing

consistency via logical clocks, but use them to implement

early conflict detection, and design a distributed logical clock

protocol that does not need cache coherence.

We propose GPU Eager Transactional Memory (GETM),

a novel GPU hardware TM design. Unlike prior eager TMs,

GETM does not rely on coherence or signature broadcast.

Instead, GETM combines encounter-time write reservations

with a logical timestamp mechanism to detect conflicts as

soon as they occur, and to allow off-critical-path commits.

0.00

0.25

0.50

0.75

1.00

tx
 e

xe
c.

 c
yc

le
s WarpTM-LL

WarpTM-EL (ideal)

0.00

0.25

0.50

0.75

1.00

tx
 w

ai
t c

yc
le

s

1 2 4 8 16 NL

max # warps with active transactions in each SM core (NL = no limit)

0.00

0.25

0.50

0.75

1.00

to
ta

l t
x

cy
cl

es

Figure 3. Time per transaction spent executing transactional code (top),
waiting for aborting transactions in the same warp and concurrency limits
(centre), and total time spent in transactions (bottom), as the number of
warps allowed to concurrently run transactions grows. Measurements from
the HT-H hashtable benchmark, normalized to the highest data point.

III. GPUs favour eager conflict detection

In this section, we argue that eager conflict detection is

particularly suited to the large number of threads concurrently

executing in a GPU, because the long commit latencies inher-

ent in lazy detection form a key bottleneck as concurrency

grows. This is not the case for CPUs, where TMs with eager

conflict detection, such as LogTM [27], are outperformed by

lazy [33] or partially lazy [34] variants.

To test this intuition, we modified the state-of-the-art GPU

TM design WarpTM [25] to emulate eager conflict detection

(cf. Fig. 2) and examined how it performs as the number

of warps per SIMT core grows. WarpTM uses lazy conflict

detection and lazy versioning (see Sec. II for details), and

commits transactions via two core↔LLC round trips: (i) the

transaction log is sent to be value-validated at the LLC

banks; (ii) the LLC sends back validation success/failure

status; (iii) the core collects the responses and (if all banks

reported success) instructs the LLC to start commit; (iv) the

LLC banks acknowledge commit completion; (v) the core can

resume executing the relevant warp. Eager conflict detection

needs to check only the currently accessed memory location,

but must be repeated for every access; therefore, to emulate

an eager-lazy design, we hacked WarpTM to run validation

(i)–(ii) for every transactional access, with no latency.

Fig. 3 (top) shows how the original WarpTM (-LL) and

idealized eager-lazy variant (-EL) perform as permitted

concurrency grows on the hashtable insertion workload HT-H.

With an increasing number of transactions, the number of

cycles spent executing each transaction (including retries)

grows much faster for the variant with lazy conflict detection

than for the eager version. This is because increasing

237

LL E
L

HT-H

0%

25%

50%

75%

100%

to
ta

l t
x

cy
cl

es

LL E
L

HT-M
LL E
L

HT-L

LL E
L

ATM

LL E
L

CL

LL E
L

CLto

LL E
L

BH

LL E
L

CC

LL E
L

AP

LL E
L

GMEAN

EXEC WAIT

HT-H

0.0

0.5

1.0

1.5

to
ta

l e
xe

c
tim

e

2.9

HT-M

2.0

HT-L

ATM

CL

CLto

BH

CC

AP

GMEAN

FGLock WarpTM-LL WarpTM-EL(ideal)

Figure 4. WarpTM with lazy and eager conflict detection compared
with hand-optimized fine-grained lock implementations. Top: cycles for
transactional segments only; bottom: tx and non-tx segments. Optimal
concurrency is used for all configurations.

concurrency increases conflicts and causes transactions to be

retried more times. For each retry, WarpTM-LL incurs the

two round-trip latency of lazy value-based validation, making

each attempt far more expensive than in WarpTM-EL.

Fig. 3 (centre) shows how long transactions wait to

commit, either because of concurrency throttling or because

of waiting for diverged threads in the same warp to abort the

transaction. Because the value-based validations in WarpTM-

LL are expensive, subsequent transactions wait longer than in

WarpTM-EL. For WarpTM-EL, wait time decreases as more

warps can execute and cover commit latency; for WarpTM-

LL, however, increasing concurrency increases the commit

queue backup and therefore the total wait cost.

The overall runtime spent in transactions is shown in

Fig. 3 (bottom). This explains why the optimal concurrency

for WarpTM-LL is 2 transactional warps per SIMT core [25],

and demonstrates that eager conflict detection can support

substantially more concurrency with much lower overheads.

Note that this effect is peculiar to architectures with high

thread-level concurrency, such as GPUs. Most CPUs run 1–2

threads per core, and have few cores per die. This places

them on the left of Fig. 3 (top), where the lazy and eager

versions execute similar number of transactional cycles.

To quantify the overall performance potential of eager

conflict detection, we simulated a range of TM benchmarks

using the lazy and eager variants of WarpTM, as well as

the equivalent non-TM versions using hand-optimized fine-

grained locks. Fig. 4 (top) shows that execution and wait

cycles spent in transactions are substantially reduced in the

eager variant, and Fig. 4 (bottom) shows that this translates

to faster overall execution time.

IV. GETM transactional memory

In this section, we sketch an overview of how GETM

provides transactional atomicity, consistency, and isolation,

and describe how it tracks the necessary metadata.

The description here focuses on the GETM protocol, how

transactions execute, and how metadata evolves. The high-

reg
file

thread block
thread block

thread block

shared
mem

L1 D$

mem ifc

tx log unit

validation
unit

commit
unit

last-level
cache bank

DRAM contr.

off-chip DRAM channel

SIMT stacksSIMT core

inter
con-
nect

stall buffer

Figure 5. Overall architecture of a SIMT core with GETM. Shaded blocks
are added for transactional memory support.

level architecture is shown in Fig. 5; implementation details,

including the metadata and queueing data structures present

at the LLC, are described in Sec. V.

A. Atomicity, consistency, and isolation
We first describe the transaction logs that provide atomicity,

and then the logical timestamp and access-time locking

mechanisms used to ensure consistency and isolation.

Transaction logs. As in prior work [24, 25], transactions
are managed at warp level, and each warp keeps a redo log

in the SIMT core’s existing local memory.

In contrast to GETM, prior work required sending the

entire log (reads and writes) to the commit units for validation

at commit time. Because GETM uses eager conflict detection,

transactions that have reached txcommit are guaranteed to

succeed, and commit-time validation is not necessary. Instead,

a committing transaction transmits only the transactional

writes from the redo log (typically a fraction of the entire

log), so that the write data can be stored in the LLC.

In addition to being logged, all transactional accesses

are sent to the LLC for eager conflict detection, using the

timestamp and lock mechanisms described below.

Logical timestamps. GETM uses distributed logical

timestamps to provide transactional consistency, and each

transaction executes at a specific logical timestamp. To

guarantee consistency, GETM must ensure that a running

transaction (a) does not observe stale values of locations

changed by logically earlier transactions, (b) does not observe

values written by logically later transactions, and (c) does

not alter values already seen by logically later transactions.

The logical timestamps tracked by GETM are shown in

Table I. Firstly, each warp keeps a logical timestamp warpts,
corresponding to the memory state observed by the last

transaction. This timestamp starts at 0, and is advanced when

transactions abort (as discussed below). All new transactions

started by this warp execute at logical time warpts.
Each cache line in the shared LLC has a write timestamp

wts, equal to one more than the logical time of the last write,

Tracked per warp

warpts the logical time at which transactions from this warp atomically execute

Tracked per LLC cache line

wts one higher than the logical time when this location was last written
rts the logical time when this location was last read
#writes # writes to this location (if non-zero, location is locked by a transaction)
owner the owner of the write reservation (if # writes is non-zero)

Table I. Metadata tracked by GETM.

238

i.e., 1 + warpts of the logically latest transaction to attempt
a write. If a transaction T attempts to access a cache line L
where L.wts > T .warpts, it means that L was written by a
transaction logically later than T , and T must abort.
Every cache line also contains a read timestamp rts, equal

to the logical time of the last read, i.e., warpts of the last
transaction to read it. A transaction T may read lines with
any rts, but writing a cache line L where L.rts > T .warpts
would overwrite a value which has already been observed

by a later transaction, and is not permitted.

The rts and wts timestamps are maintained eagerly: that is,
transactional loads update rts and transactional writes update
wts at the time of the request, regardless of whether the
transaction will eventually commit. The updated timestamps

are not reverted if a transaction aborts; while this might

unnecessarily abort some future transactions, those will be

restarted, and consistency is not compromised.

Encounter-time locks. Unlike timestamps, transactional
write data is not stored in the LLC until the transaction

reaches its commit point. This creates an isolation problem if

a transaction T1 modifies a location and a logically later but
physically concurrent transaction T2 accesses this location:
the value that should be seen by T2 depends on whether T1
will commit successfully, but T1 is still in progress.
To avoid this issue, GETM uses locks to prevent T2 from

reading the location until T1 has committed. Each cache
line has two additional fields to support this: #writes and
owner (see Table I). When a transaction T first encounters a
previously untouched cache line L, it reserves L by setting
L.#writes to 1 and L.owner to the transaction’s global warp
ID (because transactions are coalesced per warp, this uniquely

identifies a running transaction; see Sec. II-B).

Now when T2 accesses L (either for reading or writing),
it must check whether L has been reserved. If L.#writes � 0
and L.owner � T2, transaction T2 proceeds with the rts/wts
checks described above; if the checks fail then T2 is aborted,
otherwise T2 stalls until T1 commits. (We discuss the stall
buffer where stalled transactions are queued in Sec. V.)

The owner/#writes mechanism also allows a transaction
to repeatedly write the same location. If T is already the
owner of a cache line, it bypasses the rts and wts timestamp
checks, and writes the line. This is safe because T must have
previously satisfied the rts and wts timestamp constraints, and
updated wts. As any other transaction attempting to update
the line since that time would have been stalled, neither rts
and wts could have been altered since T’s reservation.
Aborts and advancing logical time. The logical time

observed by each warp (warpts) advances when transactions
are aborted. When a transaction aborts, it reports to the core

the latest logical timestamp t it attempted to read or write
(the abort cause). Since the transaction will fail again unless

it restarts at a time later than t, warpts is set to t + 1.
For example, if a transaction T has aborted because of

reading a cache line L, it must be because the cache line is

logically newer than the transaction, i.e., L.wts > warpts. In
this case, the SIMT core sets warpts to L.wts + 1, and T is
restarted. Similarly, if T aborts because of a write, warpts is
set to max(L.rts, L.wts) + 1, and the transaction restarts.
Commit and cleanup. When all threads in a warp reach

the end of the transaction (commit or abort), the SIMT core

serializes the write logs of all threads and sends them to

the LLC. For all threads that have successfully reached the

commit point, the core sends the address, write data, and

write count (since multiple writes may have been coalesced).

Once this commit/abort log is received, each entry is writ-

ten to the LLC and the relevant #writes entry is decremented.
Once #writes in a cache line has reached 0, the cache line
fully reflects the atomic transaction update, and can now be

accessed by other transactions.

Aborted transactions instead send the address and write

count for each modified cache block to facilitate cleanup. The

#writes in each cache line is updated as above; after #writes
has reached 0, the cache line reflects its pre-transaction state,

and may be accessed by other transactions.

The life of a transactional access. Fig. 6 shows how a
transactional read or write is processed in GETM.

Owner check �. If #writes is non-zero but the owner field
matches the current transaction, the line must be locked

and the access succeeds �. Stores only increment #writes
(since wts was already set by the previous write), while loads
potentially update rts if it is less than warpts.

Timestamp check �. A transaction that attempts to load an
address and finds its wts younger than the transaction’s own
warpts has detected a WAR conflict – i.e., another transaction
with a younger warpts has already written to the location
– and must abort �. Similarly, a transaction that writes a
location but finds either wts or rts to be younger than warpts
must also abort, since a logically younger transaction has

either written the location or observed its value �.
Abort notification �. If the version check discovers a

conflict, the transaction must be aborted. To minimize the

chances of the transaction aborting again, the SIMT core

is sent the highest timestamp seen so far at the LLC; this

will be used to update warpts and restart the transaction.
Meanwhile, the core notes that the thread has aborted, and

will clean up any reservations made when the entire warp

reaches txcommit or when all threads have aborted.
Write lock check �. Next, the transactional memory

operation checks whether the accessed location has been

reserved by another warp (i.e., whether #writes is non-zero).
If not, the operation succeeds without conflict: a load will

update rts (if < warpts) while a store will set #writes to 1
and update the location’s wts with the transaction’s warpts �.

Queue � and retry 	. Accesses that passed the timestamp
check but do not own the active lock must be logically

younger than the lock owner. To avoid unnecessary aborts,

these requests are queued until the owner transaction commits.

After the lock is released, the queued transactions will retry.

239

COMMIT / ABORT: at SM core

1. Serialize write log for all threads in warp
 – for committing threads, send <addr, write data, #writes>
 – for aborting threads, send <addr, #writes>

2. Transmit write log to commit unit at LLC partition

3. Update warpts to max(warpts, observed rts, observed wts) + 1

COMMIT / ABORT: at LLC partition commit unit

1. Coalesce writes to the same cache lines
 – combine write data
 – add #writes from each coalesced operation

2. Commit each line
 – write line to LLC
 – decrement relevant #writes entry

wid = A.owner
& A.#writes > 0?

A.#writes > 0?warp #wid:
ST A @ warpts

warpts ≥ max(A.wts,A.rts)?

ABORT (WAW, RAW)
report max(A.wts,A.rts)
 to core

SUCCESS,
A.#writes++ QUEUE @ LLC

(WAW)

no

yes
update log,
req to LLC

yes
no

no

yes

SUCCESS,
A.wts = warpts+1,
A.owner = wid,
A.#writes++

retry

wid = A.owner
& A.#writes > 0?

A.#writes > 0?warp #wid:
LD A @ warpts

warpts ≥ A.wts?

ABORT (WAR)
report A.wts to core

SUCCESS,
A.rts = max(warpts,A.rts)

QUEUE @ LLC (RAW)

no

yes

update log,
req to LLC

yes

no
no

yes SUCCESS,
A.rts = max(warpts,A.rts)

retry

1

31

3

2

2

4

4

7

5

8

6

5
6

78

Figure 6. The flowchart for load, store, and commit/abort logic in GETM.

LD A
@ 20

ST A
@ 20

LD B
@ 20

LD B
@ 10

ST B
@ 10

LD A
@ 10

ST B
@ 20

commit
@ 20

LD B
@ 22

ST B
@ 22

LD A
@ 22

ST B
@ 22

commit
@ 22

abort
@21

· · ·
queue
at LLC

tx2

1 2

wts

1
tx1

B
1

rts
20
10

21
11

tag

tx2

writes
A

owner
1

1
rts

10

wtstag

tx2

writesowner
A 20

110
tx1 21

B
2

tx1

0
rts

20

wtstag

tx1

writesowner
A 20

210
tx1 21

B
3

3LLC

clean
up

Figure 7. Eager conflict resolution in GETM.

B. Walkthrough example

Fig. 7 illustrates how the GETM protocol operates on two

conflicting transactions from the bank transfer example

(Fig. 1); in this benchmark, accounts are modelled as unique

memory locations. The first transaction (tx1) transfers some
amount from account A to account B, while the second (tx2)
transfers another amount from B to A. Transaction tx1 starts
at warpts = 20, and transaction tx2 starts at warpts = 10.
The central grey line represents the LLC, and the thinner

black arrows represent messages between the cores and the

LLC. The interleaving of the accesses from each transaction

has been chosen to illustrate how the eager conflict detection

and queueing mechanisms work; in reality, any interleaving

of the two transactions could occur.

First, tx1 loads and stores location A: the load updates A’s
rts to match the transaction’s warpts (i.e., to 20), and the
store updates the wts of A to exceed that of tx1 (i.e., to 21).
Then tx2 does the same with B, updating its wts to 11 and
rts to 10. At this point, tx1 and tx2 have accessed disjoint
locations and so far do not conflict. The transaction metadata

for addresses A and B at this point are shown in table �.

Next, tx2 attempts to read location A, previously altered
by tx1. Because tx2.warpts < A.wts, the load fails the version

check and will abort tx2 (cf. Fig. 6). The LLC will notify
the requesting core that the transaction been aborted, and

that the next warpts should be later than 21. The core will
then send the write/abort log for tx2 to the LLC, which will
release the reservation for B by setting the # writes field to
0. When tx1 now sends load and store requests for B, both
requests succeed since tx2 had an older version and its write
lock was cleared as tx2 aborted. At this point, the metadata
for A and B correspond to table �.

Transaction tx2 now restarts at the core, with a higher
warpts of 22. When its first load request (for B) arrives at
the validation unit, it passes the version check but finds B

reserved; the load is therefore queued in the VU’s stall buffer

and will be retried as the conflicting transaction commits.

Meanwhile, tx1 gets to its commit instruction. Because all
of its memory accesses have passed eager conflict detection,

the transaction is guaranteed to succeed. The core therefore

sends the write log to the LLC and moves on. As the write

log is processed, write reservations (#writes) for both A and
B are reset. Table � shows the metadata at this point.

Once the commit of tx1 has finished and released the
reservations on A and B, any stalled transaction accesses are

retried; in this case, this is the load of B from tx2, which

240

now succeeds. Transaction tx2 can then continue with its
remaining memory accesses, and will succeed.

V. Implementation details

Adding transactional memory support requires modifications

to both the SIMT core and the memory partition that houses

the LLC slice and a memory controller: we need to modify

the core to retry aborted transactions and record redo logs,

and to add validation and commit hardware to each memory

partition. Fig. 5 shows the overall architecture components

of a GPU core extended with GETM.

A. SIMT core extensions
SIMT Stack. Adding transactional memory support to a GPU’s
cores requires changing the SIMT stack to track which threads

in the warp are executing transactions and which must be

retried. To implement this, we leverage the modified SIMT

stack proposed by Fung et al [24]. This mechanism is similar

to branch divergence hardware [35]: for each warp, the top of

the SIMT stack tracks the threads that are currently executing,

while the stack entry immediately below tracks threads that

have aborted and must be retried.

Transaction management. While individual threads can
run separate transactions, commits occur at warp granularity

when all threads in the warp have arrived at the commit

point [25]. Nevertheless, transactions remain logically at

thread granularity: when some of the warp’s threads abort,

they are automatically retried via the extended SIMT stack

after the entire warp reaches the commit point [24].

Transaction logs. The GETM versioning mechanism is the
same as in GPU transactional memory [24]. Logs are stored

in each SIMT core’s local address space, and cached by

the L1/LLC caches. Although GETM only requires a write

log, we also record a read log to permit intra-warp conflict

detection [25]; in this technique, each transactional access is

first checked against the local per-warp read and write logs

and aborted if it conflicts with other threads in the same

warp. At commit time, however, the read log is discarded

and only the write log is sent to the commit units.

Forward progress. Aborted transactions ensure progress
by restarting with a probabilistically increasing backoff [36].

B. Validation unit
GETM protocol actions on the LLC side are carried out

by validation units (VUs), one of which is colocated with

each LLC bank. Each VU consists of (a) metadata storage

structures to track the last-written and last-read versions for

each address, and (b) a structure to buffer requests that found

a location locked but were younger than the current owner.

1) Transaction metadata storage: Because GETM explic-

itly tracks versions to enable eager conflict detection, it must

keep all metadata (wts, rts, # writes, and owner; see Table I)
for all locations that are part of any in-flight transaction, and

stash

H

overflow
(in LLC)

H H H H H H H

address

mux min

precise metadata approx. metadatamux

eviction

rtswtstag # writesowner rtswts

Figure 8. Transaction metadata table microarchitecture

some metadata (wts and rts) for all locations that have been
(or could be) accessed transactionally.

These requirements pose some challenges: firstly, transac-

tions could be very long (and, in general, unbounded), so fast

access to a potentially large lookup structure is necessary;

secondly, potentially all addresses could be accessed transac-

tionally, and tracking metadata for them all is impractical.

Our solution relies on two observations. The first is that

very long transactions are likely to be rare in well-tuned code;

therefore the metadata table can be sized for the common

case and provide a spillover mechanism (like in Unbounded

TM [37]). The second is that metadata for addresses that are

not being written by in-flight transactions can be maintained

approximately provided that the only errors are overestimates:
if the lookup mechanism reports a higher rts or wts, additional
transactions may abort, but correctness will be preserved.

Fig. 8 shows the microarchitecture of the metadata storage

structure. Our implementation has one such structure at

every LLC partition, responsible for the same address range.

It consists of two tables, accessed simultaneously during

lookups: the first tracks precise metadata for addresses

accessed by in-flight transactions, while the second tracks

approximate rts and wts for all other addresses.
Precise metadata for in-flight accesses. The precise meta-

data table is similar to a cuckoo hash table [38], extended with

a small stash [39] (conceptually similar to a victim cache);

even a small stash allows the cuckoo table to maintain higher

occupancy with limited resources [39]. When inserting a

〈key, value〉 pair causes too many swaps in the cuckoo table,

the last 〈key, value〉 pair swapped out during the insertion

process is placed in the stash, and during lookups the stash

is searched in parallel with the cuckoo table itself. We use

a four-way cuckoo table with four randomly generated H3
hashes [40] and a 4-entry fully associative stash. To permit

very long transactions, the precise table and stash can spill

to an unbounded overflow space located in main memory

and cached in the LLC. In our experiments the overflow

space was never used, so we organized the overflow as a

linked list; a commercial implementation would likely use

an asymptotically faster design such as a balanced tree or

another hashtable layer in main memory.

Unlike the original cuckoo table, our design allows the

241

tag ld/stwidtxver ld/stwidtxver· · ·
tag ld/stwidtxver ld/stwidtxver· · ·

tag ld/stwidtxver ld/stwidtxver· · ·

· · ·

· · ·

· · ·

address
(assoc.
lookup)

to validation unit
(retry access)

min txver for this address

Figure 9. Stall buffer microarchitecture

insertion process to terminate by evicting an entry that has

not been reserved by any transaction (i.e., # writes is zero).
Since the remaining metadata — wts and rts — can be

safely approximated, the evicted entry is inserted into the

approximate metadata structure described below.

Approximate metadata for inactive locations. The simplest
design for approximate version tracking is a pair of registers

tracking the maximum wts and rts that have been evicted from
the precise table. When a lookup misses in the precise table,

it is reinserted using the approximate wts and rts values from
the two registers. When we conducted experiments with this

configuration, however, we found that the version numbers

increased very quickly and caused many aborts.

To combine efficient storage of large numbers of evicted

addresses with the ability to discriminate among many of

them, we use a recency Bloom filter [24]. This structure

consists of several (in our case, four) ways indexed by

different hashes of the lookup address (we again use H3
hashes). Each address maps to one entry in each way, and

each entry stores the maximum wts and rts of all inserted
addresses that map to it. On insertion, the wts and rts in each
way are only updated if they exceed the stored values (which

may have come from a hash collision), and on lookup the

minimum wts and rts among the four ways are returned.
Timestamp rollover. Unlike physical timestamps [25],

logical timestamps advance very slowly. In our experiments,

the increment rates ranged from one increment in 1,265 cycles

to one in 15,836 cycles, depending on the benchmark. At

this rate and with a 1 GHz clock, 32-bit timestamps will roll

over less than once every 1.5 hours, and 48-bit timestamps

will roll over less than once every 11 years.

When a validation unit detects a rollover, it must ensure that

(a) all validation units roll over atomically, and (b) all SIMT

cores have rolled over. The first task can be accomplished via

two messages (containing the VU ID to break ties) sent via

a single-wire ring connecting all validation units. The first

message indicates that the recipient should stall and forward

the message to its neighbour; all VUs will be known to have

stalled when the message reaches back to the originating

VU. The second message indicates that the recipient should

roll over and continue execution. (Alternately, the existing

interconnect can be used for this purpose with an ack–reply

protocol). Cores roll over on a request from the VUs sent

over the interconnect. Once the cores have acked the request,

the VU knows that no requests are in flight; it flushes the

Baseline GPU

SIMT core config 15 cores, 48 × 32-wide warps / core, 2 × 16-wide SIMD
warp scheduler greedy then oldest (GTO)
in-core storage 32,768 registers / core, 16KB shared memory / core
L1 data cache 48KB per core, 128-byte lines, 6-way assoc.
L2 cache (LLC) 128KB / partition, 128-byte lines, 8-way assoc.,
interconnect 2 xbars (1 up, 1 down), 288GB/s each, 5-cycle latency
operating frequency SIMT core: 1400 MHz, interconnect: 1400 MHz,

memory: 924 × 4 (quad-pumped)
GDDR5 6 partitions, 32 queued requests each, FR-FCFS,

Hynix H5GQ1H24AFR timing, total BW 177GB/s
memory scheduling latency L1: 1 cycle; LLC: 330 cycles; DRAM: 200 cycles

Transactional memory support

concurrency (tx warps/core) 1, 2, 4, 8, 16, unlimited (optimal for each benchmark)
operating frequency validation unit: 1400 MHz, commit unit: 700 MHz
metadata storage precise: 4K entries (total) in 4-bank cuckoo HTs,

4-entry stashes
approx.: 1K entries (total) in 4-bank recency Bloom filters

stall buffer 4 lines with 4 entries each, per partition
validation BW 1 request/cycle per partition
commit BW 32B/cycle per partition
intra-warp conflict detection two-phase parallel, 4KB ownership table / tx warp

Table II. Simulated GPU and memory hierarchy.

stall buffer and metadata tables and resumes.

2) Stall buffer: Requests that passed the version check but
found the address locked are queued in a stall buffer until
the relevant transaction commits or aborts (see Sec. IV).

The organization of this structure, shown in Fig. 9, is

similar to a store buffer or an MSHR, but tracks several

requests for each address (from different warps contending

for the same location). When a committing transaction

decrements the #writes count to 0, it checks whether any
stall buffer entries are waiting on the relevant address; if so,

the oldest request (i.e., with the minimum warpts) re-enters
the validation unit. If the buffer is full, the transaction aborts.

C. Commit-time coalescing
The commit unit receives write logs from SIMT cores, coa-

lesces multiple accesses to the same 32-byte regions, writes

the data to the LLC, and decrements the relevant #writes
entries. While coalescing is not needed for correctness, it

efficiently uses the GPU’s wide LLC port.

To coalesce writes, we use a simplified variant of the ring

buffer used in KiloTM [24] and WarpTM [25]. In contrast

to these proposals, in GETM the commit unit receives only

the write log, so the buffer can be substantially reduced; we

conservatively size it to half of that in prior work.

VI. Results and discussion

A. Methods
Simulation setup. We follow the methodology established in
previous GPU hardware transaction memory proposals [24–

26]. GPGPUsim 3.x [41] is used to simulate the GPU and

modified to implement GETM and prior proposals. We

estimated area and power overheads of the structures required

to implement TM by modelling them in CACTI 6.5 [42],

conservatively assuming that all structures are accessed every

cycle and accounting for the higher validation unit clock. We

assumed a 32nm node (the smallest supported by CACTI 6.5).

242

name abbreviation description

Hash Table (CUDA) HT-H populate an 8000-entry hash table
HT-M populate an 80000-entry hash table
HT-L populate an 800000-entry hash table

Bank Account (CUDA) ATM parallel funds transfer (1M accounts)
Cloth Physics [45] (OpenCL) CL cloth physics (60K edges)

CLto tx-optimized version of CL
Barnes Hut [46] (CUDA) BH build an octree (30K bodies)
CudaCuts [47] (CUDA) CC image segmentation (200×150 pixels)
Data Mining [48] (CUDA) AP data mining (4000 records)

Table III. Summary of the benchmarks used for evaluation.

W
T

M
E

A
P

G
G

E
T

M

HT-H

0%
20%
40%
60%
80%

100%
120%

to
ta

l t
x

cy
cl

es

W
T

M
E

A
P

G
G

E
T

M

HT-M

W
T

M
E

A
P

G
G

E
T

M

HT-L

W
T

M
E

A
P

G
G

E
T

M

ATM

W
T

M
E

A
P

G
G

E
T

M

CL

W
T

M
E

A
P

G
G

E
T

M

CLto

W
T

M
E

A
P

G
G

E
T

M

BH

W
T

M
E

A
P

G
G

E
T

M

CC
W

T
M

E
A

P
G

G
E

T
M

AP

W
T

M
E

A
P

G
G

E
T

M

GMEAN

EXEC WAIT

Figure 10. Transaction-only execution and wait time, normalized to
WarpTM (lower is better). Note that EAPG is idealized.

Table II describes the simulation setup. For fair comparison

of the eager conflict detection mechanism with the value-

based detection from prior proposals, we keep the same base-

line: a GPGPU similar to NVIDIA’s GTX480 (Fermi [43])

with 15 cores, 6 memory partitions, and latencies derived

from microbenchmark studies [44]. To investigate scalability

to higher core counts, we also simulated a configuration with

56 cores in 28 clusters, and a 4MB L2 cache in eight 8-way

banks; for WarpTM, we doubled the recency filter size, and

for GETM we doubled only the precise metadata table.

Baselines. We compare GETM against WarpTM [25], and
an idealized implementation of the EarlyAbort/Pause-n-Go

(EAPG) proposal [26].3 We use TM benchmarks from prior

work [24, 25]; they are summarized in Table III.

B. Results
Performance and crossbar traffic. Fig. 10 shows the
total number of cycles spent executing transactions and

waiting for other transactions to finish, normalized to the

WarpTM baseline. For most workloads, GETM reduces both

transaction execution time and wait time. CC and AP have

contention over few memory locations, and GETM sees many

aborts; because commits and aborts are cheap in GETM,

however, this is still faster than WarpTM and EAPG. In CC

and AP, transactions spend little time waiting because they

account for a small portion of the total runtime. We find that,

for these benchmarks, even idealized EAPG is ineffective,

as only 5.2% aborts come from the early-abort mechanism

and 1.3% transactions are ever paused. Essentially, by the

time a broadcast update reaches the cores, most conflicting

transactions have already been sent for validation/commit. In

fact, EAPG underperforms WarpTM because the additional

early-abort broadcasts congest the core↔LLC interconnect

3Specifically, write signatures broadcast to cores were idealized as 64-bit
messages, refcount table updates on the LLC side were idealized to one
cycle for the entire tx log, and the early conflict check was made instant.

HT-H

0.0

0.5

1.0

1.5

to
ta

l e
xe

c
tim

e

2.9 3.3

HT-M

2.0 2.5

HT-L

ATM

CL

1.6

CLto

BH

CC

AP

GMEAN

FGLock WarpTM EAPG (ideal) GETM

Figure 11. Execution time normalized to the fine-grained lock baseline,
including transactional and non-transactional parts (lower is better).

HT-H

0.0

0.5

1.0

1.5

2.0

to
ta

l x
ba

r
tr

af
fic

2.1

HT-M

HT-L

ATM

CL

CLto

BH

CC

3.2

AP

GMEAN

WarpTM EAPG (ideal) GETM

Figure 12. Crossbar traffic load normalized to WarpTM (lower is better).

(even though these are idealized as single header-only flits).

We expect that EAPG can be effective only with extremely

long transactions.

Overall performance is shown in Fig. 11: on average,

GETM outperforms WarpTM by 1.2× (gmean) and is within

7% of the fine-grained lock baseline. The trend mirrors that of

the transactional execution and wait time above. Benchmarks

with high contention benefit more, because GETM aborts

doomed transactions without the need to queue at the LLC for

value-based validation, and show substantial improvements

(up to 2.1× for HT-H). Low-contention workloads perform

comparably to WarpTM.

The improved performance comes at a minor cost in

interconnect traffic compared to WarpTM (Fig. 12). Although

GETM does not need to transmit the transaction read log

at commit time, it needs to acquire locks for every write at

encounter time, whereas WarpTM only contacts the TCD for

loads. In addition, despite better performance, GETM has a

higher abort rate, which adds to the interconnect traffic load.

Sensitivity to validation unit parameters. Because the
validation unit contains a cuckoo-like structure where worst-

case insertions can take many cycles, we measured the

average number of validation unit cycles spent on accessing

the metadata tables for each request (Fig. 13). Even under

very high load factors (> 99%), long insert chains where
all entries have #writes > 0 are very unlikely; when they do
occur, the stash is effective as predicted theoretically [39].

We also investigated the effect of changing metadata

table sizes and granularity (Fig. 14); we tested 2K, 4K,

and 8K entries GPU-wide, and 16, 32, 64, and 128-byte

granularity assuming 4K table entries GPU-wide. A 2K

metadata footprint is too small (and, indeed, requires a

larger stash), especially when parallelism is abundant (e.g.,

HT-H); because 8K entries do not significantly outperform

4K entries, we settled on 4K entries for other parts of

the evaluation. Decreasing granularity generally improves

performance because false sharing is reduced; however, it

also reduces effective table size when parallelism is high and

243

HT-H

0.0

0.5

1.0

1.5

2.0

av
g.

 #
 a

cc
es

s
cy

cl
es

HT-M HT-L ATM CL CLto BH CC AP AVG

Figure 13. Mean latency of the cuckoo table in the metadata storage
structure (≥ 1.0, lower is better). The combination of allowing evictions to
the approximate table and the small stash makes insertions very efficient.

HT-H

0.0
0.2
0.4
0.6
0.8
1.0
1.2

to
ta

l e
xe

c
tim

e

HT-M

HT-L

ATM

CL

CLto

BH

CC

AP

GMEAN

GETM-2K GETM-4K GETM-8K

HT-H

0.0
0.2
0.4
0.6
0.8
1.0
1.2

to
ta

l e
xe

c
tim

e

HT-M

HT-L

ATM

CL

CLto

BH

CC

AP

GMEAN

GETM-128B
GETM-64B

GETM-32B
GETM-16B

Figure 14. Sensitivity to metadata table size (top) and granularity (bottom).
Execution time normalized to a WarpTM baseline (lower is better).

the total number of addresses accessed is higher. We chose

32-byte granularity for all other tests.

Since requests that pass the timestamp check but find

their target location reserved are queued in the stall buffer,

we measured stall buffer performance. Fig. 15 shows the

maximum total occupancy of all stall buffers; this never rises

above 12 requests across the entire GPU. Fig. 16 shows that

very few requests are queued up on average for any given

address. In the rest of the evaluation, we conservatively sized

the stall buffers to 4 addresses with space for 4 requests each.

Abort rates under contention. Both WarpTM and GETM
limit transactional concurrency to optimize performance. Ta-

ble IV lists the best concurrency settings for each benchmarks

— i.e., the number of warps in each core allowed to run

transactions concurrently — and the resulting number of

aborted transactions. With abundant parallelism (e.g., HT-

H), GETM is efficient at higher concurrency than WarpTM.

The eager conflict detection in GETM also translates to

dramatically faster commits and aborts than the value-based

conflict detection in WarpTM, so GETM can handle higher

abort rates and still perform substantially better.

Scalability. To investigate scalability at higher core counts,
we also simulated WarpTM and GETM in a configuration

with 56 SIMT cores and a 4MB LLC; Fig. 17 shows the

results. While performance differences vary slightly per

benchmark, the overall trends match the 15-core setup.

Silicon area and power. Table V shows the area and power
overheads introduced by adding TM support. Because GETM

removes most of the structures needed by WarpTM, it has

3.6× lower area overheads and 2.2× lower power overheads

(4.9× and 3.6× lower than EAPG). Overall, GETM adds

HT-H

0

4

8

12

m
ax

 s
ta

ll
bu

ffe
r

si
ze

HT-M HT-L ATM CL CLto BH CC AP AVG

Figure 15. The maximum number of addresses queued at any given time
(total of all stall buffers in the GPU).

HT-H

0.0

0.5

1.0

1.5

st
al

le
d

re
qu

es
ts

 /
ad

dr

HT-M HT-L ATM CL CLto BH CC AP AVG

Figure 16. The average number of requests per address that concurrently
reside in the stall buffer.

∼0.2% area to a GTX 480 die scaled down to 32nm.

VII. Related work

GPU TM. To date, all hardware-level transactional memory
proposals for GPUs have been based on KiloTM [24]; this

system combines lazy version management with lazy, value-

based conflict detection. Follow-up work [25] extended

KiloTM with an intra-warp conflict detection mechanism

and a silent-commit filter for read-only transactions based

on physical timestamps. A later proposal [26] added global

broadcast updates about currently committing transactions,

and leveraged this to pause or abort doomed transactions; we

use an idealized version of this as one of our baselines. GPU-

LocalTM [30] is a limited form of transactional memory

that guarantees atomicity only within a core’s scratchpad;

Bloom filters [49] are used for conflict detection. Software

transactional memory proposals for GPUs have used either

per-object write locks [50] or combined value-based detection

with TL2-like timestamp approach [51]. Given special DRAM

subarrays [52], and at the cost of substantial memory

overheads and extensive OS/software changes, GPU snapshot

isolation [31] can reduce abort rates in long transactions

by buffering many concurrent memory states; it retains two-

round-trip lazy validation and must update snapshot versions

in DRAM, resulting in even longer commit latencies.

CPU HTM. Since hardware-level transactional memory
was first proposed [12, 13], many CPU implementations have

been proposed. Many leverage the existing inter-core coher-

ence mechanism to identify conflicts, either my modifying the

coherence protocol [23, 33, 34, 53], adding extra bits to the

coherence state [27, 54, 55], or leveraging coherence to update

read/write signatures [28, 56, 57]. Existing GPU coherence

proposals, however, cannot support eager TM: they either

rely on special language-level properties [58], eschew write

atomicity [59], or cannot support detecting conflict times [60].

Other TM proposals [29, 33, 61–64] rely on signature or

update broadcasts, or on software-assisted detection [65–67].

Timestamp-based TM. Transactional memory schemes

244

best concurrency aborts / 1K commits

WTM EAPG WTM-EL GETM WTM EAPG WTM-EL GETM
HT-H 2 2 8 8 119 113 122 460
HT-M 8 4 8 8 98 84 83 172
HT-L 8 4 8 8 80 78 78 207
ATM 4 4 4 4 27 26 25 114
CL 2 2 4 4 93 91 119 205
CLto 4 2 4 4 110 61 72 176
BH 2 2 8 ∞ 93 86 145 865
CC ∞ ∞ ∞ ∞ 6 5 1 38
AP 1 1 1 1 231 237 204 9188

Table IV. Optimal concurrency (# warp transactions per core) settings and
abort rates for different workloads. (WTM = WarpTM.)

HT-H

0.0

0.5

1.0

1.5

to
ta

l e
xe

c
tim

e

3.3

HT-M

4.0

HT-L

3.8

ATM

2.4

CL

1.6

CLto

1.8

BH

2.3

CC

1.7

AP

GMEAN

2.2

WarpTM
EAPG (ideal)

GETM
WarpTM-56Core

EAPG (ideal)-56Core
GETM-56Core

Figure 17. Execution time in GPUs in 15-core and 56-core configurations,
normalized to 15-core WarpTM performance (lower is better).

element area [mm2] power [mW]

WarpTM

CU: LWHR tables (3KB×6) 0.108 21.84
CU: LWHR filters (2KB×6) 0.03 12.00
CU: entry arrays (19KB×6) 0.402 100.62
CU: read-write buffers (32KB×6) 1.734 132.48
TCD: first-read tables (12KB×15) 0.375 113.25
TCD: last-write buffer (16KB total) 0.031 9.86

total WarpTM 2.68 390.05

EAPG (in addition to WarpTM)

CAT: Conflict Address Table (12KB×15) 0.6 153.3
RCT: Reference Count Table (15KB×6) 0.294 75.6

total EAPG 3.574 618.95

GETM (independent of WarpTM)

CU: write buffers (16KB×6) 0.522 85.56
VU: precise tables (64KB total) 0.181 69.59
VU: approximate tables (8KB total) 0.018 8.51
warpts tables (192B×15) 0.015 10.65
stall buffer (30B×4×6) 0.0004 2.67

total GETM 0.736 176.98

Table V. CACTI area and power (dynamic + static) estimates for
WarpTM [25], EAPG [26], and GETM overheads (32nm node). CU: commit
unit; TCD: temporal conflict detection; VU: validation unit.

based on logical clocks share commonalities with timestamp-

based approaches. These have been used mainly in soft-

ware TMs to maintain consistency [68]; hardware TMs

have leveraged them to maintain fairness and forward

progress [27, 37, 69], snapshot isolation [70], and in prior

GPU work to avoid validation of read-only transactions [25].

Logical-time coherence and consistency. Lamport first
observed that consistency guarantees can be maintained

using logical clocks [71]; the read and write versions

tracked by GETM use this insight. Logical clocks have also

been used to implement coherence in a logically ordered

bus (e.g., [72, 73]), to extend snooping [74, 75], and by

directly tracking access timestamps [60, 76, 77]; two of these

proposals [60, 76] also use logical timestamps to enforce

sequential consistency. Logical clocks were also used to

dynamically verify consistency models [78]. While the

concepts of coherence and consistency are related to TM,

they do not offer atomicity and isolation for access sequences

as transactional memory does.

VIII. Conclusions

We have presented GETM, the first full GPU transactional

memory mechanism with eager conflict resolution. By

combining explicit version tracking with encounter-time write

reservations, GETM enables efficient conflict detection and

off-the-critical-path commits. GETM is up to 2.1× faster than

the state-of-the-art GPU TM (1.2× gmean), while incurring

3.6× lower area overheads and 2.2× lower power overheads.

Acknowledgements

This research was supported by the Natural Sciences and

Engineering Research Council of Canada. The authors are

grateful to Tor Aamodt and Daniel Lustig, as well as the

anonymous reviewers, for helpful discussion and suggestions.

References

[1] M. Méndez-Lojo et al., “A GPU Implementation of Inclusion-
based Points-to Analysis,” in PPoPP, 2012.

[2] Y. Xu et al., “Lock-based Synchronization for GPU Architec-
tures,” in CF, 2016.

[3] A. Li et al., “Fine-Grained Synchronizations and Dataflow
Programming on GPUs,” in ICS, 2015.

[4] N. Moscovici et al., “POSTER: A GPU-Friendly Skiplist
Algorithm,” in PPoPP, 2017.

[5] T. H. Hetherington et al., “MemcachedGPU: Scaling-up Scale-
out Key-value Stores,” in SoCC, 2015.

[6] NVIDIA. Inside Volta: The World’s Most Advanced Data
Center GPU. Parallel Forall blog entry. [Online]. Available:
https://devblogs.nvidia.com/parallelforall/inside-volta/

[7] D. C. Arnold et al., “Stack Trace Analysis for Large Scale
Debugging,” in IPDPS, 2007.

[8] E. A. Lee, “The Problem with Threads,” IEEE Computer,
vol. 39, p. 33, 2006.

[9] R. N. Taylor, “Complexity of analyzing the synchronization
structure of concurrent programs,” Acta Informatica, vol. 19,
pp. 57–84, 1983.

[10] G. Ramalingam, “Context-sensitive Synchronization-sensitive
Analysis is Undecidable,” ACM Trans. Program. Lang. Syst.,
vol. 22, pp. 416–430, 2000.

[11] A. ElTantawy and T. M. Aamodt, “MIMD synchronization on
SIMT architectures,” in MICRO, 2016.

[12] M. Herlihy and J. E. B. Moss, “Transactional Memory:
Architectural Support for Lock-free Data Structures,” in ISCA,
1993.

[13] J. M. Stone et al., “Multiple reservations and the Oklahoma
update,” IEEE Parallel Distributed Technology: Systems Ap-
plications, vol. 1, pp. 58–71, 1993.

[14] T. Harris et al., “Composable Memory Transactions,” in
PPoPP, 2005.

[15] F. Zyulkyarov et al., “Atomic Quake: Using Transactional
Memory in an Interactive Multiplayer Game Server,” in PPoPP,
2009.

[16] C. J. Rossbach et al., “TxLinux: Using and Managing
Hardware Transactional Memory in an Operating System,”
in SOSP, 2007.

245

[17] ——, “Is Transactional Programming Actually Easier?” in
PPoPP, 2010.

[18] Intel, “Intel architecture instruction set extensions program-
ming reference: Chapter 8: Intel transactional synchronization
extensions,” Tech. Rep., 2012.

[19] R. Haring et al., “The IBM Blue Gene/Q Compute Chip,”
IEEE Micro, vol. 32, pp. 48–60, 2012.

[20] C. Jacobi et al., “Transactional Memory Architecture and
Implementation for IBM System Z,” in MICRO, 2012.

[21] H. W. Cain et al., “Robust Architectural Support for Transac-
tional Memory in the Power Architecture,” in ISCA, 2013.

[22] S. Chaudhry et al., “Rock: A High-Performance Sparc CMT
Processor,” IEEE Micro, vol. 29, pp. 6–16, 2009.

[23] J. Chung et al., “ASF: AMD64 Extension for Lock-Free Data
Structures and Transactional Memory,” in MICRO, 2010.

[24] W. W. L. Fung et al., “Hardware Transactional Memory for
GPU Architectures,” in MICRO, 2011.

[25] W. W. L. Fung and T. M. Aamodt, “Energy Efficient GPU
Transactional Memory via Space-time Optimizations,” in
MICRO, 2013.

[26] S. Chen and L. Peng, “Efficient GPU hardware transactional
memory through early conflict resolution,” in HPCA, 2016.

[27] K. E. Moore et al., “LogTM: log-based transactional memory,”
in HPCA, 2006.

[28] L. Yen et al., “LogTM-SE: Decoupling Hardware Transactional
Memory from Caches,” in HPCA, 2007.

[29] L. Hammond et al., “Transactional Memory Coherence and
Consistency,” in ISCA, 2004.

[30] A. Villegas et al., “Hardware support for Local Memory
Transactions on GPU Architectures,” in TRANSACT, 2015.

[31] S. Chen et al., “Accelerating GPU Hardware Transactional
Memory with Snapshot Isolation,” in ISCA, 2017.

[32] D. Dice et al., “Transactional Locking II,” in DISC, 2006.
[33] H. Chafi et al., “A Scalable, Non-blocking Approach to

Transactional Memory,” in HPCA, 2007.
[34] S. Tomić et al., “EazyHTM: EAger-LaZY hardware Transac-

tional Memory,” in MICRO, 2009.
[35] A. Levinthal and T. Porter, “Chap – a SIMD Graphics

Processor,” in SIGGRAPH, 1984.
[36] S. Lam and L. Kleinrock, “Packet Switching in a Multiaccess

Broadcast Channel: Dynamic Control Procedures,” IEEE Trans.
Commun., vol. 23, p. 891, 1975.

[37] C. S. Ananian et al., “Unbounded transactional memory,” in
HPCA, 2005.

[38] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in ESA, 2001.
[39] A. Kirsch et al., “More Robust Hashing: Cuckoo Hashing with

a Stash,” SIAM J. Comput., vol. 39, pp. 1543–1561, 2009.
[40] D. Sanchez et al., “Implementing Signatures for Transactional

Memory,” in MICRO, Dec 2007.
[41] A. Bakhoda et al., “Analyzing CUDA workloads using a

detailed GPU simulator,” in ISPASS, 2009.
[42] N. Muralimanohar et al., “CACTI 6.0: A tool to model large

caches,” HP Laboratories, Tech. Rep., 2009.
[43] NVIDIA, “NVIDIA’s Next Generation CUDA Compute Ar-

chitecture: Fermi,” 2009.
[44] H. Wong et al., “Demystifying GPU microarchitecture through

microbenchmarking,” in ISPASS, 2010.
[45] A. Brownsword, “Cloth in OpenCL,” in GDC, 2009.
[46] M. Burtscher and K. Pingali, “An Efficient CUDA Implemen-

tation of the Tree-Based Barnes Hut n-Body Algorithm,” in
GPU Computing Gems Emerald Edition. Elsevier, 2011.

[47] V. Vineet and P. J. Narayanan, “CUDA cuts: Fast graph cuts
on the GPU,” in CVPRW, 2008.

[48] G. Kestor et al., “RMS-TM: A Comprehensive Benchmark

Suite for Transactional Memory Systems,” in ICPE, 2011.
[49] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with

Allowable Errors,” Commun. ACM, vol. 13, pp. 422–426, 1970.
[50] D. Cederman et al., “Towards a Software Transactional

Memory for Graphics Processors,” in EGPGV, 2010.
[51] Y. Xu et al., “Software Transactional Memory for GPU

Architectures,” in CGO, 2014.
[52] V. Seshadri et al., “RowClone: Fast and energy-efficient in-

DRAM bulk data copy and initialization,” in MICRO, 2013.
[53] D. Dice et al., “Early Experience with a Commercial Hardware

Transactional Memory Implementation,” in ASPLOS, 2009.
[54] J. Bobba et al., “TokenTM: Efficient Execution of Large

Transactions with Hardware Transactional Memory,” in ISCA,
2008.

[55] B. Saha et al., “Architectural support for software transactional
memory,” in MICRO, 2006.

[56] C. C. Minh et al., “An Effective Hybrid Transactional Memory
System with Strong Isolation Guarantees,” in ISCA, 2007.

[57] J. Casper et al., “Hardware Acceleration of Transactional
Memory on Commodity Systems,” in ASPLOS, 2011.

[58] M. D. Sinclair et al., “Efficient GPU Synchronization Without
Scopes: Saying No to Complex Consistency Models,” in
MICRO, 2015.

[59] I. Singh et al., “Cache coherence for GPU architectures,” in
HPCA, 2013.

[60] X. Ren and M. Lis, “Efficient Sequential Consistency in GPUs
via Relativistic Cache Coherence,” in HPCA, 2017.

[61] T. Knight, “An architecture for mostly functional languages,”
in LFP, 1986.

[62] L. Ceze et al., “Bulk Disambiguation of Speculative Threads
in Multiprocessors,” in ISCA, 2006.

[63] S. H. Pugsley et al., “Scalable and reliable communication
for hardware transactional memory,” in PACT, 2008.

[64] M. M. Waliullah and P. Stenstrom, “Starvation-free transac-
tional memory-system protocols,” in ECPP, 2007.

[65] A. Shriraman and S. Dwarkadas, “Refereeing conflicts in
hardware transactional memory,” in ICS, 2009.

[66] A. Shriraman et al., “Flexible decoupled transactional memory
support,” in ISCA, 2008.

[67] ——, “An integrated hardware-software approach to flexible
transactional memory,” in ISCA, 2007.

[68] P. Felber et al., “Time-Based Software Transactional Memory,”
IEEE Trans. Parallel Distrib. Syst., vol. 21, p. 1793, 2010.

[69] R. Rajwar and J. R. Goodman, “Transactional Lock-free
Execution of Lock-based Programs,” in ASPLOS, 2002.

[70] H. Litz et al., “SI-TM: Reducing Transactional Memory Abort
Rates Through Snapshot Isolation,” in ASPLOS, 2014.

[71] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Commun. ACM, vol. 21, p. 558, 1978.

[72] B. Sinharoy et al., “POWER5 system microarchitecture,” IBM
J. Res. Dev., vol. 49, p. 505, 2005.

[73] H. Q. Le et al., “IBM POWER6 microarchitecture,” IBM
J. Res. Dev., vol. 51, p. 639, 2007.

[74] M. M. K. Martin et al., “Timestamp Snooping: An Approach
for Extending SMPs,” in ASPLOS, 2000.

[75] N. Agarwal et al., “In-Network Snoop Ordering: Snoopy
coherence on unordered interconnects,” in HPCA, 2009.

[76] X. Yu and S. Devadas, “TARDIS: Timestamp-based Coherence
Algorithm for Distributed Shared Memory,” in PACT, 2015.

[77] X. Yu et al., “Tardis 2.0: Optimized Time Traveling Coherence
for Relaxed Consistency Models,” in PACT, 2016.

[78] A. Meixner and D. J. Sorin, “Dynamic Verification of Mem-
ory Consistency in Cache-Coherent Multithreaded Computer
Architectures,” in DSN, 2006.

246

