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Abstract—Stateless model checking (SMC) coupled with dy-
namic partial order reduction (DPOR) is an effective way for
automatically verifying safety properties of loop-free concurrent
programs. SMC, however, does not work well for programs with
loops because it cannot distinguish loop iterations that make
progress from ones that revisit the same state. This results in
redundant exploration that dominates the verification time.

We present SAVER (Spinloop-Aware Verifier), a memory-
model-agnostic SMC/DPOR extension that detects zero-net-effect
spinloops and avoids redundant explorations that lead to the same
local state. As confirmed by our experiments, SAVER achieves an
exponential reduction in verification time and outperforms state-
of-the-art tools in a variety of real-world benchmarks.

Index Terms—stateless model checking, spinloops

I. INTRODUCTION

Stateless model checking (SMC) [1] is a prominent tech-
nique for verifying safety properties of concurrent programs,
especially under weak memory consistency [2]-[6]. The key
design choice that makes SMC scale is that it does not
record the set of states explored, but rather uses alternative
techniques, namely dynamic partial order reduction (DPOR)
[7], [8], to avoid exploring the same state multiple times. The
downside of this choice, however, is that SMC struggles with
spinloops, i.e., loops that continuously read a shared variable
until some condition holds: as SMC does not record the set
of visited program states, it cannot distinguish loop iterations
that make progress from those that return to the same state. To
make matters even worse, such loops are ubiquitous in real-
world concurrent programs, whether lock-based or lock-free.

Consequently, spinloops typically have to be bounded. Since
bounding generally sacrifices the soundness of the verification,
one would like to use fairly large loop bounds to be confident
enough that the program verified is correct. Doing so, however,
is practically infeasible. A loop bound of N > 2 typically
leads to an exponential blowup in the state space, since the
model checker explores the possibility of each spinloop failing
0,1, ..., N—1 times and, for each failure, all possible stores
from which the spinloop loads(s) can read.

To avoid the blowup, the solution is to use a bound of N =
1. So far, this is typically done manually by rewriting the
program to use assume statements (a.k.a. await), special
verifier commands that block the execution of the relevant
thread when the condition of the assume is violated.

The goal of this paper is to determine conditions under
which it is sound to do such conversions automatically. As
we shall see, this turns out to be quite challenging.
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First, spinloops cannot be adequately detected by a sim-
ple syntactic criterion. Since programming languages have
many ways of creating spinloops (e.g., while loops, repeat-
until loops, for-loops, goto statements), their detection is best
done after converting each program thread into a control-flow
graph (CFG). However, even there, simply removing the CFG
backedges for side-effect-free loops (i.e., loops with no stores
to global variables or to local variables that are live at the loop
header) is insufficient, as illustrated by the program below.
As a convention, in our examples, we use x,y, z for global
(shared) variables and a, b, c, ... for registers.

b:=x
while (b#0)b:=x

While the loop in thread I can be easily bounded by converting
it into a := z;assume(a = 0), the one in thread II cannot
because b is “live” at the header of the loop (its value is used
in the loop).

Second, some spinloops may have side-effects, but these
either do not occur on all their iterations or are never observed
by the other threads (e.g., writing to a global variable that
is not concurrently read) or cancel each other out (e.g.,
incrementing and then decrementing a variable, acquiring and
releasing a lock). As an example of the latter kind, consider
the following zero-net-effect (ZNE) spinloops extracted from
a lock implementation.

while (true)
a:= fetch_add(z,1)
if (a = 0) break
fetch_add(z, —1)

// critical section

fetch_add(z, —1)

do a:==zx

while (a # 0) (LOOP-PEEL)

while (true)

b:= fetch_add(z,1)

if (b=0) break

fetch_add(z, —1)
// critical section
fetch_add(z, —1)

(INC-DEC-SPIN)

Each thread tries to acquire the lock by incrementing x. If
the lock was already taken, it decrements = and tries again.
The lock is finally released by decrementing x. Since each
decrement cancels out the previous increment, we would
like to avoid considering loop iterations with a decrement,
i.e., unsuccessful lock acquisition attempts. The soundness of
doing so depends on the context. If, for instance, there is
another thread repeatedly reading z, it may observe the value
of x flickering, which cannot happen if we bound the ZNE
loops to a single iteration. Similarly, if another thread writes
to x concurrently, the loop may no longer have a zero net
effect, rendering the transformation unsound.

This article is licensed under a Creative
BY Commons Attribution 4.0 International License



To address these challenges, we develop SAVER (Spinloop-
Aware Verifier), a model checker that reduces spinloops to a
single iteration. SAVER works at the level of reduced control
flow graphs, obtained by merging bisimilar nodes. Whenever
a spinloop cannot be shown to be side-effect-free statically,
SAVER dynamically checks that the reduced spinloop itera-
tions have a zero net effect (in particular, that the context
does not observe any of their effects), and if the check fails,
it rolls back the transformation.

We remark that our results are independent of the memory
consistency model: they hold not only for sequential consis-
tency (SC), but also for weak memory models, which admit
executions that cannot be expressed as program interleavings.

II. PRELIMINARIES

In this section, we review how programs can be represented
as control flow graphs (§ II-A), how their executions can
be modeled as execution graphs (§ II-B), and how DPOR
enumerates these executions (§ II-C).

A. Control Flow Graphs

To avoid cluttering the presentation, we omit all features
irrelevant to loops and concurrency. We represent a concurrent
program P as a top-level parallel composition of threads, each
of which is modeled as a control-flow graph (CFG). A CFG is
a directed graph whose nodes are program labels and whose
edges are labeled with instructions of the following form:

Inst> i := r:=e | error|assume(e) |r:=z|z:=¢]|

r:= fetch_add(z,e) | r := CAS(x,e1,e2)

where 7 ranges over registers (i.e., local variables), x over
global (shared) variables, and e over simple expressions built
from integer constants n, registers, and arithmetic operators:

Expoes=n|r|le+e|e —e|..

Instructions comprise plain assignments; error, that halts the
program (e.g., due to a safety violation); assume(e), that
blocks the calling thread if e has the value zero; and memory
accesses. Memory accesses include r := x, that reads the
value of x and stores it in r; x := e, that stores the value con-
tained in e in the global variable z; r := fetch_add(z,e)
(fetch-and-increment) that atomically increments the value of
z by the value of e and returns the old value to r, and
r := CAS(z, e, e2) (compare-and-swap), that atomically com-
pares the value stored in location = with the value of e, and if
they are equal, replaces the value of x with the value of e5. The
r := CAS(z, e1, e2) instruction always returns the result of the
comparison in r. We also use the term load instruction to refer
to r := z, r := CAS(z,e1,e2), and r := fetch_add(z,e)
instructions, while we use store instruction to refer to x := e,
r := CAS(z,e1,e3), and r := fetch_add(z,e) instructions.

We assume that input programs are deterministic in that
each node n either has at most one successor (for standard
program statements), or it has two successors labeled with
assume(e) and assume(—e) respectively (for conditionals
and loops). As an example, Fig. 1 shows the CFGs for the

assume(a # 0)

assume(a = 0)

Fig. 1. CFGs for the two threads of LOOP-PEEL.

two threads of the LOOP-PEEL program from §I. The loops
generate cycles in the CFGs, and the conditional tests (whether
to execute another loop iteration or to exit the loop) generate
the edges labeled with assume statements.

A path 7 in a CFG is an alternating sequence of nodes
and instructions corresponding to edges in the CFG, start-
ing and ending with a node. That is, m is of the form
nlilngigng nk_lik_lnk where (nj, ij,nj+1) is an edge in
the CFG for all 1 < 5 < k. As it is common in the literature,
we are primarily interested in simple paths, which do not visit
the same node twice, except possibly by their last node. A
(simple) path is cyclic if it starts and ends with the same
node, while a lasso path is one whose end node is one of
its intermediate nodes. We write |7| to denote the length of
the path (i.e., the number of edges it contains), and 7(k) to
project the k" node and/or instruction of the path.

We say that node a dominates b if all paths from the entry
node of the CFG to b contain a. Given a path 7 in a CFG, we
say that a node h of 7 is its header if it dominates all nodes
in . By definition, paths can have at most one header; in the
case of reducible graphs, every cyclic path has a header. For
example, in Fig. 1, nodes 1 and 5 are the headers of the two
cyclic paths, respectively.

A loopy path is a simple path that starts and ends at its
header. Formally, a simple path 7 is called a loopy path of an
edge n — h if (1) = 7(|n|) = h and w(|7| — 1) = n and h
dominates all nodes in 7 (i.e., h is a header of ).

B. Execution Graphs

In order to keep our approach as general as possible, we
follow the standard axiomatic approach of Alglave et al
[9] and represent the executions of a concurrent program as
execution graphs. Using execution graphs allows us to keep
our formalism memory-model-agnostic, as our contributions
do not depend on a particular memory consistency model.

Execution graphs have two basic components:

(1) a set of events (nodes), that represent the memory ac-
cesses performed by the program, and

(ii)) some relations on these events (edges), such as the
program order, which relates events in the same thread,
and the reads-from relation, which relates reads to writes
they are reading from.

The semantics of a program P is given by the set of execution
graphs that correspond to the instructions of the program and
satisfy the consistency predicate of the underlying memory
model. The purpose of the consistency predicate is to rule
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Fig. 2. MP: three consistent execution graphs under SC.

out executions with nonsensical edges, such as a load reading
from a store later in program order or a store that has been
overwritten by another store before the load.

To see how execution graphs model the executions of a
program, consider the following example:

r:=1
y:=1

a

b (MP)

=Y
=z
Under SC, the MP program has three consistent executions,
shown in Fig. 2, where the solid edges represent the program
order and the green dashed edges the reads-from relation.
As can be seen, execution (4) is inconsistent under SC—the
consistency predicate of SC forbids the load of z to read from
the initial state as the load is already aware of the x := 1
store. This execution, however, is allowed under certain weak
memory models, such as the ‘relaxed’ fragment of RC11 [10].

Let us now formally describe events and execution graphs.
For a more extensive discussion regarding execution graphs,
we refer interested readers to Kokologiannakis et al. [5].

Definition 1. An event, e € Event, is either an initialization
event (init [) for a location | € Loc or a thread event
(t,i,lab) where t € Tid is a thread identifier; i € ldx = N is
a serial number inside each thread, and lab € Lab is a label
that takes one of the following forms:

e Read label: R(1) where | € Loc is the location accessed.

o Write label: W(l,v) where | € Loc is the location
accessed, and v € Val £ 7, is the value written.

o Error label: error.

e Blocked label: blocked, generated by assume(e) state-
ments when e is false.

o ZNE label: zne(x), which is used to mark ZNE loops.

Definition 2. An execution graph G consists of:

1) a set G.E of events that includes initialization events for
all locations accessed by the program, and

2) a function G.rf, called the reads-from map, that maps
each read event of G to a same-location write event of
G from where it gets its value.

Our formal definition of execution graphs does not record
the program order (po) as an explicit component because it

Algorithm 1 Dynamic Partial Order Reduction
1: procedure VERIFY(P)

2 (G,I) « (G, Ly)

3: do

4: VISITONE(P, G, T)
5 while (G,T") < pop(T")

6: procedure VISITONE(P,G,I)

7: while consistent(G) A a < nextp(G) do
8 GE+ GE{a}

9: if a € error then exit(“error”

10: else if a € R then

11: let {wo} Wws = G.ENWyoc(a)

12: G < SetRF(G,wq, a)

13: I < push(T', {SetRF(G, w,a) | w € ws})
14: else if o € W then

15: CALCREVISITS(G, T, a)

16: CHECKZNEVALIDITY (G, a)

can be defined directly from our representation of events:

po = {((init 1), (¢,i,lab)) | VI, 1,4, lab} U
{<<t1, 1, lab1>, <t2, 12, lab2>> | =t AN < ZQ}

Initialization events precede all non-initialization events in po,
while events in the same thread are ordered according to their
serial numbers. Events from different threads are unordered.

C. Dynamic Partial Order Reduction

DPOR verifies a program by generating all of its consistent
execution graphs and checking that none of them contains an
error. To do so, DPOR typically assumes some basic prop-
erties of the consistency predicate, such as prefix-closedness
and extensibility [5], which are satisfied by all known memory
models that follow the graph representation of § II-B.

This graph representation is also very helpful for DPOR
because it encodes the independence relation that is tradition-
ally used by DPOR algorithms to decide which interleavings
should be explored. Indeed, under sequential consistency, each
graph corresponds to the set of thread interleavings that are
equivalent under the reads-from equivalence [11], [12] (or
under Mazurkiewicz equivalence if we extend the graphs to
also record the coherence order).

Algorithm 1 shows the general structure of a DPOR algo-
rithm. The procedure VERIFY verifies a concurrent program P
by starting from the graph G containing only the initialization
events and an empty environment I'y (Line 2), and exploring
the executions of P one by one by calling VISITONE (Line 4).
VISITONE does most of the exploration work: it explores one
full execution of P and populates I" with alternative exploration
options. These exploration options recorded in I' are later
explored by VERIFY (Line 5).

At each step, VISITONE extends the current execution G
by one event a (obtained via nextp(G)), as long as G remains
consistent according to the memory model (Line 7). If there
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are no more events to add, then G is complete, and VISITONE
returns. If a denotes an error (e.g., an assertion violation), it
is reported to the user and verification terminates (Line 9).

If a is a read, then it must read from some write in G. To
this end, VISITONE calculates the set of all writes in G on the
same location as a (Line 11), and chooses one write wg as the
reads-from option for a (Line 12). For all other same-location
writes, an alternative execution is added to I' so that it can be
explored later by VERIFY (Line 13).

If a is a write, it needs to revisit existing reads of the
same location in (G, because a was not present in the graph
when VISITONE was considering possible reads-from options
for these reads. To that end, VISITONE calls CALCREVISITS
(Line 15), which extends I" with such alternative explorations.
Since the discussion on how these explorations are calculated
is not relevant for this paper, we do not present it here; we
refer interested readers to Kokologiannakis et al. [S5], where
CALCREVISITS is explained in detail.

Note that Algorithm 1 does not have any special treatment
for assume statements. Whenever nextp(GG) encounters an
assume statement whose condition is not satisfied, it returns
a blocked event and stops scheduling that thread thereafter.
When VERIFY later pops some graph that does not contain
the blocked label (e.g., because the graph represents an
alternative exploration choice before the blocked event), the
thread will be again schedulable, and other options that might
not block the assume will be considered.

III. BOUNDING EFFECT-FREE SPINLOOPS

Effect-free loop iterations that do not exit the loop are
almost unobservable: they do not affect the set of reachable
program states, and so can be ignored when verifying safety
properties of a program. (We note that for liveness properties,
effect-free loop iterations cannot be discarded that simply.
An infinite sequence of such effect-free iterations, unless
prevented by some fairness assumption about the program’s
semantics, yields a non-terminating run of the program.)

What remains to be clarified is what exactly constitutes an
effect-free loop iteration. Clearly, the iteration should not be
writing to a global variable, as otherwise other threads may
be able to observe whether the iteration took place or not.
Similarly, it should also not be assigning to any local registers
that could affect the subsequent execution of the thread itself,
i.e., to any variables that are /ive at the header of the loop.
Assigning to a dead variable is harmless because, by definition,
it does not affect the subsequent execution of the thread, even
if technically it might reach a slightly different local state
(differing only in the values of dead variables).

We note that spinloops need to be effect-free only along
looping paths—they may well have side-effects on paths
exiting the loop. This is frequently the case for CAS-loops,
such as the following implementation of an atomic increment:

do

a:=z

success := CAS(z,a,a+ 1)
while (—success)

(CAS-LOOP)

while (true)

h := head

t = tasl

n := next[h]

h' := head

if (h# k') continue
if (h=1)

if (n) break

CAS(tail, t,n)
else

b := CAS(head, h,n)

if (b) break

Fig. 3. Simplified dequeue operation from the ms—queue benchmark and
its CFG, whose instructions are abbreviated. In the code, head, next, and
tail are global variables, while b, h, h/, n, and t are local registers.

Here, even though the loop contains a CAS, which is generally
an effectful instruction, along the looping path, the CAS fails,
and so the path is effect-free.

We also note that loops often have multiple looping paths,
only some of which are effect-free. Consider, for instance,
the while loop in Fig. 3, which is extracted from the
ms—queue benchmark of §VIIL. It contains three loopy paths.
The first (through the cont inue statement) is trivially effect-
free because it contains only loads and assignments to dead
variables. (All local variables are dead at the loop header.) The
second path (when h = t) can have side-effects—the CAS to
tail. The third path (when h # t) is again effect-free because
whenever its CAS succeeds, the function returns.

Let us now make these intuitions more formal. A path 7 is
pure if it either contains no store instructions or, if it contains
any, all of them are failed CASes. That is, whenever (i) is
a store instruction, then it is of the form r := CAS(x, e, e2)
and there is ¢ < j < || such that 7(j) = assume(—r) and
for all 4 < k < j, w(k) does not assign to r.

Pure paths do not affect the global state, but can affect the
local state. A loopy path does not affect the local state if it
always reaches the same local state it started from. A simple
approximation to reaching the same state is for the path to not
assign to any variable that is live at its header. Putting these
conditions together, an effect-free spinloop is a pure loopy path
that does not assign to any variable live at its header. Formally:

Definition 3. A CFG edge n — h is an effect-free spinloop
backedge if every loopy path of n — h is pure and assigns
only to registers dead at h.

The spin-assume transformation removes all effect-free
spinloop backedges from the CFG. Returning to the exam-
ple in Fig. 1, the edge 2 — 1 is an effect-free spinloop
backedge; removing it transforms thread I of LOOP-PEEL
into a := z;assume(a = 0). In contrast, the backedge of
thread II (6 — 5) is not effect-free and so the spin-assume
transformation does not affect thread II.
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IV. DETECTING MORE KINDS OF SPINLOOPS

While the spin-assume transformation defined in the previ-
ous section can detect typical cases of do-while spinloops,
it does not apply to while loops that have a non-trivial
condition.

The main problem is that the registers used to evaluate the
condition are live at the loop header, and so any loop iterations
that update these registers are deemed effectful. As a simple
example, consider the spinloop of thread II of LOOP-PEEL
from §I: register b is live at the beginning of the loop, and so
the body of the loop (b := z) is effectful. (Formally, in the
CFG of Fig. 1, register b is live at node 5—the loop header.)

One simple way to resolve this problem is to apply a
compiler transformation called loop rotation, which moves the
loop exit checks to the end of the loop. Applying loop rotation
transforms the second thread of LOOP-PEEL as follows:
b:==x
if (b#0)

do b:=z while (b#0)
The transformed loop can be bounded with the spin-assume
transformation yielding executions with at most two loads of
z. We note that this bounding outcome is suboptimal, since
thread I of LOOP-PEEL is bounded with a single load of z.

A better approach for this example is to exploit bisimilarity
among CFG nodes. Two nodes are bisimilar if they produce
the exact same computations, i.e., if their outgoing edges can
be matched 1-to-1 in a way that every two matched edges are
labeled with the same instruction and lead to bisimilar nodes.
Bisimilarity can be computed as a greatest fixed point, starting
with the identity relation (i.e., each node being bisimilar to
itself) and adding pairs of nodes whenever they have matching
outgoing edges to nodes already calculated to be bisimilar.
For example, in Fig. 1, nodes 4 and 6 are bisimilar because
they both have only one outgoing edge labeled with the same
instruction (b := x) and leading to the same node (5).

Having detected that two (distinct) nodes a and b are
bisimilar, we can then merge them into one node by redirecting
b’s incoming edges to a and deleting node b. For example,
merging nodes 4 and 6 of Fig. 1 would add an edge from 5 to
4 with label assume(b # 0), and remove node 6. Effectively,
this transformation converts the second thread of LOOP-PEEL
to a do-while loop analogous to that in its first thread, which
makes the spin-assume transformation applicable.

We note that merging bisimilar nodes is not always strictly
better than loop rotation. There are cases where loop rotation
(or a similar transformation called jump threading) can trans-
form a loop into the do-while form, but no two distinct
bisimilar nodes exist. Such cases frequently arise with CAS
loops like the following.

b:==x
while (b # 0) ~
b:==x

success = false
while (—success)
a:=z
success := CAS(z,a,a + 1)

(CAS-LOOP2)

Here, the spin-assume transformation is not directly applicable
to CAS-LOOP2 because success is live at the loop header

and is updated by the loop body. Loop rotation and/or jump
threading, followed by dead assignment elimination, convert
this program to CAS-LOOP, which can by handled by the spin-
assume transformation. By contrast, merging bisimilar nodes
does not change the program, since the program does not
contain the same instruction twice.

V. DYNAMICALLY CHECKING PURITY

The spin-assume transformation as described in §III uses a
completely static definition of purity. If a CAS along a CFG
path cannot be determined to always fail, the path is deemed
effectful. This is, however, suboptimal for two reasons.

First, using a static purity definition prevents us from
transforming paths that are pure only under certain contexts.
For instance, consider the thread below, and assume that it is
running as part of a program that only writes the value O to z
(this might not be inferable statically):
do a:= zfz\b := cas(z,0,1)

a:=z \ZJ

b:.= CAS(ZC,O, 1) assume(a = b)
while (a =)

assume(a # b)

In this case, the (only) loopy path of this thread will not be
deemed pure (as the CAS is not followed by an assume(—b)
statement), even though it will never produce observable
effects in its running context as a will always be 0.

Second, in cases where a loopy path contains a CAS
that does have observable effects, it is wasteful to explore
executions where such a CAS fails. To see this, consider again
the dequeue operation of the ms—queue example in Fig. 3.
As explained in §III, the second loopy path of this operation
is not pure, as it potentially has side-effects. Still, it does not
make sense to consider iterations where the CAS of this path
fails, as they both do not contribute to the loop exiting, and
they produce no observable side-effects.

Leveraging the insights above, we say that a CFG backedge
n — h is a potentially effect-free spinloop backedge if every
loopy path of n — h assigns only to registers dead at h.
The dynamic-spin-assume transformation marks all potentially
effect-free spinloop backedges with a dynamic purity check.
Whenever the nextp(G) function of Algorithm 1 encounters
such a check, it validates whether G contains any write event
originating from the respective loop iteration and, if not, it
returns a blocked event, thereby blocking the execution of the
respective thread. Otherwise, if the loop iteration did generate
a write event, nextp(G) proceeds with the next event.

In fact, the dynamic purity check described above can be
relaxed even further: SAVER allows loop iterations to contain
write events, as long as these only affect memory locations
that are not reachable by other threads. In turn, this proves
very useful in cases where some initialization writes need to
take place as part of a loop.

To see an example of this, consider the push operation
of the treiber-stack benchmark (cf. Fig. 4). First, a node to
be inserted to the stack is created, but this node cannot be
initialized fully: its next field needs to point to the existing
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n := new-node() n := new-node()

n.value := 42 nvalue =42

do s 1= stack
s := stack assume(—b) (| n.next 1= s
n.next == s b := caS(stack, s, n)
b := CAS(stack, s,n)

while (—b) assume(b)

Fig. 4. Simplified push operation from the treiber-stack benchmark
with its CFG: stack is a global variable, while b, n, and s are registers.

top of the stack, but the stack top might change between the
time it is read, and the time the node is created. Thus, the
push operation first reads the stack, sets it as the node’s next,
and then tries to atomically replace the stack with the newly
created node. If the replacement succeeds, the operation exits;
otherwise, it tries again. Notice, however, that, as long as the
replacement CAS does not succeed, the store to the node’s
next remains unobserved by the other threads. Thus, it is safe
to consider failed CAS loop iterations as effect-free, and block
their exploration.

As a final remark, we observe that validating effect-free
loops dynamically makes SAVER resilient to more aggressive
loop rotation passes that convert loops to a canonical form
containing a single backedge (see §VII).

VI. HANDLING ZERO-NET-EFFECT SPINLOOPS

Let us now consider the more challenging case of zero-net-
effect (ZNE) loops. Recall that these are spinloop iterations
that do have side-effects but (1) whose side-effects cancel each
other out, and (2) whose intermediate effects are not observed
by other threads. While condition (1) can be checked pretty
well statically, condition (2) has to be checked dynamically.
In the discussion below, we focus on ZNE loops that arise
because of an atomic increment being followed by an atomic
decrement of the same location and value.

A decrement instruction at node k is a canceling decrement
in a loop A if all of A’s loopy paths that contain node k also
contain a prior opposite increment instruction, and the paths
are effect-free modulo two instructions. More formally:

Definition 4. A node k in a (minimal) CFG cycle with header
h is a canceling decrement if it has a (unique) outgoing edge
of the form r := fetch_add(x,n), and for every loopy
path 7 of h such that w(i) = k for some 1 < i < |r|, there
exists j < i such that w(j) = rq := fetch_add(x,—n) for
some T2, and replacing the instructions at 7 (i) and w(j) with
plain assignments to r1 and ro yields an effect-free path.

SAVER’s spin-zne transformation annotates all canceling
decrements so that when nextp(G) encounters them for the
first time (cf. Algorithm 1, Line 7), it generates a zne () event
and blocks the thread instead of generating a read event and
afterwards a write event. The zne (x) event serves as a marker
for SAVER to validate that the transformation is sound.

Validation of ZNE loops happens every time a new event
e is added to the graph by calling the CHECKZNEVALIDITY

e [init]
N
RG) . R()

l .-
W(z,1)

|
zne (x)

Fig. 5. Execution graph encountered during the exploration of ZNE-OBS.

routine (Algorithm 1, Line 16). If we use the pair (w,z) to
represent a blocked ZNE loop iteration with w being the event
corresponding to the increment of the ZNE loop and z being
the zne event, the addition of e can render the reduction of
the (w, z) loop unsound in one of the following two ways.
First, if e writes to the same location as w, it can be ordered
(in coherence) between w and the blocked decrement (after
z), and so, unless e is also an atomic increment, w and its
corresponding decrement will no longer cancel each other out.
Second, if e reads from w and there is already some other
read event reading from w, then, in an alternate execution,
it is possible for e to read from the canceling decrement
instead of w, thereby observing the value of the shared variable
flickering. To see this, consider the example below.

while (true) b=z
a:= fetch_add(z,1) || i£ (b) (ZNE-OBS)
if (a = 42) break ci=zx
fetch_add(z,—1) assert(c)

Note that the loop of the first thread fulfills the conditions of a
ZNE loop, and so the second fetch_add() will be annotated
by the spin-zne transformation.

Figure 5 shows the execution graph arising from adding the
events of thread I and then adding the read event corresponding
to the b := x instruction of thread II in the case it reads the
incremented value of x. Next, we have to add the event cor-
responding to ¢ := x. In this graph, the only consistent option
for this event is to also read the incremented value of x, which
satisfies the subsequent assertion. Yet, if we had the decrement
of z instead of the zne event in the graph, c could also have
read the value O from the decrement, and the assert would
have failed. Thus, it is clear that concurrent reads can render
the transformation of ZNE spinloops unsound.

Therefore, CHECKZNEVALIDITY (G, e) (cf. Algorithm 2)
checks whether either of these two conditions holds for any
existing zne(x) event in the graph (where x is the location
accessed by e), and if so, it removes the zne event(s) and
unblocks the corresponding thread(s), which will eventually
add the missing decrement event(s) and restore soundness.

Other cases of ZNE loops can be handled in a similar
manner. For example, consider spinloops containing matching
lock acquisitions and releases. In such a case, acquiring the
lock acts as the increment operation and releasing the lock
as the matching decrement. Statically, it therefore suffices to
check that each lock release in the spinloop has its correspond-
ing lock acquisition earlier in the same spinloop iteration.
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Algorithm 2 ZNE Spinloop Validity Check
1: procedure CHECKZNEVALIDITY(G, €)
2: if e is a write other than from a fetch_add() then
G.E < G.E\ zne(location-of(e))
elseif ¢ € Ryo(z)AJe’ # e.G.rf(e’) = G.rf(e) then
G.E + G.E\ matching-zne(G.rf(e))

A

Dynamically, we simply check that no other thread accesses
the lock besides by calling the acquire and release methods.

VII. IMPLEMENTATION

We implemented SAVER as an extension to the open-source
GENMC tool [5], [13]. GENMC is a state-of-the-art stateless
model checker for C/C++ programs that works at the level
of LLVM Intermediate Representation (LLVM-IR), and can
verify programs under weak memory models such as RCI11
[10] and IMM [14]. SAVER is implemented as (a) a collection
of transformation passes that modify GENMC’s input before
the latter starts the verification procedure, and (b) slight
modifications to GENMC’s DPOR algorithm that handle the
dynamic checks for pure and ZNE loops.

As expected, SAVER imposes negligible overhead over
GENMC, as its transformations take place statically, before
the verification procedure starts, and the dynamic conditions
for purity and ZNE loops can be checked in O(n) time (where
n is the size of the graph), which is dominated by GENMC'’s
existing consistency checks.

We conclude this section with some remarks regarding the
implementation of loop rotation and the merging of bisimilar
nodes over GENMC/LLVM.

In the case of loop rotation, we have implemented our own
custom loop rotation pass that applies to loops whose rotation
is deemed worthwhile. Although LLVM already contains an
implementation of loop rotation, that implementation performs
a more aggressive transformation by converting loops to a
canonical form containing a single backedge. That is, if the
loop contains multiple backedges, it constructs a new node
with a backedge to the loop header and redirects all the
existing backedges to the new node. This latter transforma-
tion is detrimental to the static detection of effect-free paths
because it would, for example, conflate the three loopy paths
of ms—queue’s dequeue operation (Fig. 3), thereby disabling
the spin-assume transformation for the two that are effect-free.
To avoid this unintended consequence, one would then have
to undo this transformation (e.g., by invoking a form of jump
threading) or rely on dynamic purity checks (§V). Instead, and
to be able to statically transform as many loops are possible,
we opted for implementing our own loop rotation pass, that
transforms simple loops like CAS-LOOP2; loops that are not
captured by our loop rotation pass are handled dynamically.

In the case of merging of bisimilar nodes, there are also a
couple of points worth mentioning. First, detecting bisimilar
nodes on LLVM is more complicated than what was discussed
in §IV because LLVM represents programs in static single
assignment (SSA) form. The effect of this design choice is that

there are never two nodes with identical assignments on their
outgoing edges, since by the SSA definition each assignment
is to a different register. Therefore, the standard bisimilarity
algorithm outlined earlier in this section will not detect any
nodes as being bisimilar!

As an example, consider the “SSA-CFG” of thread II of the
LOOP-PEEL program from §I, which is shown below.

The SSA-CFG is an enriched kind of CFG whose nodes may
have ¢-guards that define a variable differently depending on
the incoming control flow path. For instance, in the SSA-CFG
above, at node 2, b; is defined to be equal to by if node 2 is
reached from node 1, or to by if it is reached from node 4.

In order to match nodes 1 and 4, our bisimilarity implemen-
tation has not only to account for ¢-nodes, but also unify the
variables by and bs. It does so by collecting equality constraints
and solving them by unification. For each node with more than
one incoming edge, the algorithm starts iterating backwards for
each pair of predecessors, and collects the constraints under
which these predecessors are equal, simplifying them along
the way. The iteration stops when some nodes cannot be equal
under any constraints, or the entry node has been reached. At
that point, any pair of nodes whose constraints can be trivially
solved (namely, nodes 1 and 4 above) are deemed bisimilar.

Besides making bisimilarity detection more complex, SSA
also affects the merging of bisimilar nodes. Consider the
program below along with its SSA-CFG.

a:=0 ag =0

b.==x 2)

while (frue) bo ==
ai=a-4+1 @ =aao/2az/4) (3) b1 = albo/2b2/4)
b=z

bz::ma2:2a1+1

As can be seen, each of the assignments is to a different
register, and node 3 contains two ¢-guards (one for a and
one for ) selecting the appropriate register to use depending
on the incoming branch. With the algorithm outlined above
one can detect that nodes 2 and 4 are bisimilar. However, one
cannot simply add an edge as := a; + 1 from node 3 to node
2 because that would violate the SSA form. To ensure that the
resulting CFG is well-formed we also have to introduce a ¢-
guard at node 2 to say which version of a should be used for
node 2. Our implementation achieves this by moving ¢-guards
the incoming values of which have not been deemed bisimilar
(e.g., the ¢-guard for a here) to the new loop header, along
with any other incoming edges these ¢-guards have.
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VIII. EVALUATION

In this section, we evaluate the effectiveness of SAVER’s
optimizations on a variety of benchmarks. Our evaluation
comprises two distinct parts, with the first part concerning
the overall performance of SAVER in a real-world setting,
and the second part evaluating the effectiveness of employing
individual transformations.

In general, we observe that applying the transformations
introduced in this paper typically leads to exponential gains in
real-world benchmarks with spinloops. Key to these gains are
SAVER’s dynamic checks for spinloop purity and/or validity
of ZNE spinloops, as well as the bisimilarity-based reduction
of CFGs, which enables more spinloops to be bounded.

We conducted all experiments on a system with an Intel(R)
Core(TM) i5-6600 CPU (4 cores @ 3.30GHz) and 16GB of
RAM, running a custom Debian-based distribution. We used
LLVM 7 for GENMC (v0.5.3). All reported times are in
seconds. We set the timeout limit to 30 minutes.

A. Overall Performance

We start by evaluating SAVER on some challenging data
structures utilizing weak-memory atomics that we harvested
from the literature, including all data-structure benchmarks
from GENMC’s original paper [5]. Since we want to measure
the effectiveness of SAVER’s optimizations over the existing
GENMC implementation, we do not compare against other
tools and use GENMC as a baseline for our comparison.
Since GENMC already contains a simple heuristic that con-
verts some very simple do-while spinloops into assume
statements, we use two versions of GENMC: one with its
heuristic disabled and one with it enabled.

As can be seen in Table I, these benchmarks demonstrate
that SAVER is extremely effective in a real-world setting, and
that SAVER’s extensions combined lead to exponential gains.
For all these benchmarks apart from mutex-musl, we have
used an unroll value of N 4+ 1 (where N is the number of
threads, shown in parentheses) for both GENMC and SAVER
to avoid manually unrolling any loops that spawn threads
or initialize thread-local variables. For mutex-musl an unroll
value of 2 and some manual unrolling was used, to keep
the state space manageable. The transformations that SAVER
applies are shown on the rightmost column, where S, D, Z,
L, and B stand for spin-assume, dynamic-spin-assume, zne-
assume, loop-rotation, and bisimilarity, respectively.

As can also be seen, GENMC'’s simple heuristic is of
rather limited value. It works very well only for the first two
benchmarks (mcslock and gspinlock), where it matches the
performance of SAVER. For the next three benchmarks (se-
glock, mpmc-queue, and linuxrwlocks), it reduces the number
of executions explored, but is still much slower than SAVER.
Specifically, for mpmc-queue(4) and linuxrwlocks(4) GENMC
does not manage to terminate within the time limit, while for
seqlock(4) it needs 30.71 seconds. For the remaining eight
benchmarks, GENMC'’s heuristic does not apply at all.

SAVER, on the other hand, is able to employ its transforma-
tions (even if only partially) on all the benchmarks and, with

TABLE 1
REAL-WORLD BENCHMARKS

GENMC\ 5 GENMC SAVER
Execs Execs Execs Time  Trans
mcslock(3) 5964 336 336 0.09 S
mcslock(4) ® 26 232 26232 6.20 S
gspinlock(2) 12 6 6 0.02 S
gspinlock(3) 13764 564 564 0.09 S
seqlock(3) 430 147 9 0.03 S
seqlock(4) 3670360 87980 88 0.21 S
mpmc-queue(3) 1232884 15808 166 0.12 S, D
mpmc-queue(4) ® ® 39706 193.41 S, D
linuxrwlocks(3) 14 059 037 38033 24 0.04 B,S,Z
linuxrwlocks(4) O O 1060 036 B,S,Z
chase-lev(5) 17367 17367 3835 0.20 S
chase-lev(6) 778 581 778 581 41055 2.39 S
treiber-stack(3) 426 426 18 0.10 S, D
treiber-stack(4) 1546 168 1546 168 484 0.61 S, D
mutex(2) 18 18 12 0.09 S, D
mutex(3) 59 760 59760 7086 0.54 S, D
mutex-musl(2) 34 34 26 0.09 S, D
mutex-musl(3) 652104 652104 361296 28.20 S, D
ttaslock(3) 11031 11031 162 0.10 S, D
ttaslock(4) ® ® 20760 2.46 S, D
twalock(3) 1338 1338 96 0.10 S
twalock(4) 1018872 1018872 6144 0.72 S
ms-queue(3) 1389 1389 75 0.09 11,S,D
ms-queue(4) €] €] 10662 2813 1,S,D
scgather(3) 7560 7560 90 0.04 Z
scgather(4) 1247400 1247400 2520 1.07 Z

the exception of mutex-musl, this leads to a huge reduction
in verification time over GENMC. That is, even if in some
cases, SAVER only applies spin-assume/zne-assume in some
of the data-structure’s methods, or even in some paths of a
particular method, SAVER is still orders of magnitude faster
than GENMC. Concretely, for all benchmarks, SAVER is able
to transform at least one of the spinloops completely into
an assume statement. For seqlock, SAVER reduces the read
paths; for mpmc-queue, it reduces both the enqueue and de-
queue methods; for linuxrwlocks, the read_lock and write_lock
methods, for chase-lev, the steal method; for treiber-stack, the
pop method; for mutex, mutex-musl, ttaslock, and twalock,
various spinloops in the lock and unlock paths; for ms-queue,
the enqueue and dequeue methods; and for scgather the check
method. Finally, the smaller gains in verification time for
mutex-musl are due to the small unroll value used and the
fact that SAVER’s transformations do not apply to all the
benchmark loops.

B. Employing Dynamic Purity/Unobservability Checks

As it can be seen from Table I, in more than half of
the benchmarks, SAVER checked the purity of a spinloop or
the non-observability of its intermediate effects dynamically.
Dynamic checking proves useful for three cases.

First, in cases like ms-queue, plain spin-assume is not
enough to fully transform some spinloop iterations into
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TABLE II
BENEFITS OF BISIMILARITY

SAVER\g\1, SAVER\g SAVER
Execs Time Execs Time  Execs Time
ws+r-peeled(3) 9264697 81.01 5418  0.04 1 0.01
ws+r-peeled(4) 83357632 1353.39 13419 0.18 1 0.01
w+rs-peeled(3) ® ® 893025 4.75 1 0.01
w+rs-peeled(4) C) C) ® ® 1 0.03

assume statements because they contain possibly succeeding
CAS operations. Recall from Fig. 3 that the second loopy path
of the simplified dequeue implementation is not effect-free.
By adding a dynamic check to the relevant backedge, SAVER
only considers iterations where the CAS actually succeeds,
thus greatly reducing the state space of the program.

Second, in other cases (e.g., mutex and ttaslock), dynamic-
spin-assume is necessary as spinloops contain function calls
possibly containing side-effects. As it is difficult to determine
statically whether these side-effects will actually take place in
the particular calling context, the check is deferred to runtime.

Third, the unobservability checks both for initialization
writes in failed CAS loops (e.g., treiber-stack) and for ZNE
loops (linuxrwlocks and scgather) are very hard to perform
statically with sufficient precision. As such, performing them
dynamically is the only viable option.

C. Employing Loop Rotation and Bisimilarity Reduction

Loop rotation and bisimilarity reduction are similarly impor-
tant in some real-world test cases. Even though they do not
yield any performance improvements on their own, they are
instrumental in making the spin-assume and zne-assume trans-
formations applicable to more complex cases. Specifically,
in benchmarks like ms-queue and linuxrwlocks, spin-assume
and zne-assume are not applicable without loop rotation and
bisimilarity respectively. And, in fact, these are not the only
cases that we have encountered; there are many ways to rewrite
the same benchmarks so that they also require bisimilarity
and/or loop rotation, thus rendering these transformations a
necessity, as opposed to an enhancement.

As a further demonstration of their usefulness, we consider
two synthetic test cases inspired by the LOOP-PEEL example.
In these tests, some threads repeatedly write to a shared
variable, which is read by readers that employ schemes similar
to LOOP-PEEL’s second thread. As explained in §III, spin-
assume is not directly applicable in such cases because the
live variables of the header are redefined within the loop.
Thus, we used an unroll value of 3, and manually unrolled any
loops utilized by the writer threads. For these benchmarks, we
used three SAVER versions: the default version that employs
both bisimilarity and loop rotation (SAVER), a version where
bisimilarity is disabled (SAVER\g) and a version where both
bisimilarity and loop rotation are disabled (SAVER\z\1). The
results can be seen in Table II.

With bisimilarity reduction, SAVER transforms the spinloops
into assume statements and only explores one execution,

since only one combination of values satisfies the assumes.
Applying only loop rotation is equivalent to transforming the
syntactic spinloops in these programs into assume statement
but keeping the peeled iteration. Thus, SAVER\y explores a
much larger number of executions, which affects the veri-
fication time. Applying neither transformation (SAVER\z\1,)
explores a huge number of executions and often timeouts.
These results highlight the necessity of being resilient against
small syntactic variations as, even if a single read is not taken
into account when transforming a spinloop into an assume,
the state space might grow exponentially.

IX. RELATED WORK AND CONCLUSIONS

We have presented a set of automated techniques for
soundly bounding various kinds of spinloops to a single
iteration, which empowers SMC to reason effectively about
programs containing such spinloops. Although our contribu-
tion was presented in terms of SMC, it should be equally ap-
plicable to SAT/SMT-based bounded model checking (BMC)
implemented by different tools (e.g., [15]-[17]).

Although there is a large body of work on model checking
concurrent programs (e.g., [12], [18]-[22]), we are not aware
of any other automated technique for bounding such a wide
range of spinloops including potentially effect-free and ZNE
loops. NIDHUGG [3], [23], RCMC [4] and GENMC [5], [13]
are the only other tools we are aware of that automatically
transform some spinloops to assume statements but they limit
themselves to very simple busy-wait loops with no side-effects
and no CAS instructions and they are not resilient to simple
syntactic variations of such loops. POET [24] does recognize
spinloop iterations that do not make progress, but saves the
program state in order to do so.

Since both SMC and BMC cannot handle programs with
executions of unbounded length, most tools bound the number
of allowed loop iterations by a user-specified bound. Other
tools like CDSCHECKER [2] use a memory-liveness bound to
ensure termination for spinloops. As shown in § VIII, bounding
techniques in general are inferior to converting spinloops to
assume statements in terms of scalability.

Bounding of spinloops to a single iteration is, however, not
a totally new idea. In a rather different context, Flanagan et
al. [25] have used purity for proving atomicity of concurrent
libraries treating effect-free spinloops as though they had been
reduced to assume statements. Elmas et al. [26] have also
performed similar transformations in their tool QED, which
allows a programmer to initiate a sequence of reductions and
abstractions to statically establish correctness of a program.
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